<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 模擬技術 > 設計應用 > AD9852芯片在原子頻標中的應用簡介

          AD9852芯片在原子頻標中的應用簡介

          作者: 時間:2012-11-11 來源:網絡 收藏

          引言

          本文引用地址:http://www.ex-cimer.com/article/185576.htm

          被動型銣中,綜合器模塊完成以下功能:

          (1) 量子系統(tǒng)作為一個鑒頻器,基態(tài)87Rb原子0-0躍遷的中心頻率為6834.××××MHz,其中尾數部分××××頻率由綜合器產生。

          (2) 為了實現(xiàn)微波磁共振探測,需要在微波信號上加一個鍵控小調頻(調制頻率為幾十或上百赫茲),這項功能亦由綜合器來完成。

          (3) 此外,對量子鑒頻信號做同步鑒相時,需要提供同步鑒相參考信號且可移相,此項功能也由綜合器完成。

          在綜合器的研發(fā)工作中,實際采用了一微處理器與配合使用,構成綜合模塊。微處理器完成產生同步鑒相參考脈沖與79Hz鍵控調頻方波信號的功能,通過將微處理器產生的方波信號引入DDS的鍵控調頻引腳,由DDS產生5.3125MHz鍵控調頻信號,經濾波后,送入后續(xù)混合電路環(huán)節(jié)中。

          物理機制

          在一臺實際的被動型銣中,由于各種因素的影響,原子譜線不可能是絕對對稱的,盡管壓控晶振的頻率輸出經射頻倍頻、綜合、微波倍頻混頻后獲得的實際頻率可以精確等于譜線的峰值頻率,但由于實際譜線不對稱,經過伺服環(huán)路對量子系統(tǒng)輸出鑒頻信號的處理后,輸出的糾偏電壓中就具有調頻頻率的基波分量,該基波分量是一個偽誤差電壓,會使壓控晶振頻率拉偏,如圖1所示。

          1.jpg

          圖1 量子系統(tǒng)鑒頻輸出示意圖

          若方波調頻的深度保持不變,則這個頻移量也不變,但是由于傳統(tǒng)銣頻標中采用了變容二級管調制電路,變容二級管是溫敏元件,環(huán)境溫度變化時,不可避免地將造成方波調頻深度發(fā)生變化。顯然,當方波調頻的深度增加時,附加頻移量增加;當方波調頻的深度減小時,附加頻移量減小。因此,銣頻標中的譜線不對稱,將會通過調制電路給銣頻標帶來溫度系數。故在設計時,將調制電路從變容二極管調制方式改為DDS鍵控調頻調制方式。

          直接頻率合成

          主要由參考頻率源、相位累加器、波形存儲器(正弦函數功能表)、數模轉換器及低通濾波器組成。參考頻率源為DDS提供工作時鐘頻率,DDS輸出的合成信號的頻率穩(wěn)定度在不考慮內部諸如附加相位噪聲等環(huán)節(jié)的影響時,和參考頻率源是一樣的。

          在頻率變換器件中,100Hz和1kHz處的相噪是比較關鍵的技術指標,對用DDS做成的綜合器而言,它取決于DDS輸出信號的相噪、濾波環(huán)路的性能以及放大電路的附加相噪等,其后兩項是根據實際設計的濾波及放大電路決定的,對于第一項則取決于實際采用的種類。圖2為一款DDS的輸出相噪圖。

          2.jpg

          圖2 DDS相噪對比圖

          由圖2可見,采用內部倍頻的方式在偏離1kHz、輸出5MHz時相噪為140dBc/Hz;若直接采用300MHz的時鐘時,相噪的性能在偏離1kHz時為142dBc/Hz。因此,為了提高DDS輸出信號的相噪性能,采用外部倍頻法是一個比較好的選擇,即把輸入時鐘信號在外部進行N倍頻后加到DDS上。

          DDS在使用時,要通過微處理器或CPLD對其信號、數據進行管理控制來實現(xiàn)具體應用中所需要的若干功能,圖3為我們選用的一款DDS外圍電路示意圖。

          其中,MCLK引腳接外部時鐘源,使DDS的IOUT引腳輸出端頻率信號的穩(wěn)定度與外部時鐘源一致。對于內部沒有PLL倍頻環(huán)節(jié)的DDS,通常MCLK端輸入時鐘源的頻率應高于IOUT端輸出信號頻率的4倍。如輸出信號頻率為5.3125MHz,那么MCLK時鐘端的信號頻率應該大于20MHz,以期望得到更好的相位噪聲,通過外部濾波電路后,可得到比較純凈的信號譜。FSELECT為鍵控調頻信號輸入端,也就是我們的調制方波79Hz信號輸入端,我們使用的DDS內部有兩個頻率控制寄存器,通過編程的方式將預先設置好的頻率值F0、F1保存在寄存器中,當FSELECT端有有方波信號輸入時(即電平上升沿或下降沿轉換),DDS的IOUT端將會隨之分別從頻率控制寄存器中讀出F1或F0的值作為輸出,并且會保障頻率信號在切換時相位無變化。PSEL1、PSEL0為兩路信號頻率F1、F0的相位調節(jié)端,在應用中,如果需要保持F1、F0在切換時的相位連續(xù),需要在設計中直接將PSEL1、PSEL0接地。DDS與外界通訊的時序是通過引腳FSYNC、SCLK、SDATA來完成的,其串行通訊的時序如圖4所示。

          當FSYNC為高電平時,SCLK、SDATA引腳為高阻狀態(tài)。當FSYNC為低電平時,DDS將處于通訊狀態(tài)。此時引腳SCLK有一下降沿的脈沖時,將使掛在數據總線SDATA上的DATA寫入DDS數據緩沖區(qū),直至最終一個DATA寫入時,DDS將根據引腳FSELECT上的狀態(tài)選擇F1或F0作為IOUT端的輸出。

          信號的產生

          本文選用的DDS芯片內部有2個32位頻率控制寄存器(F0、F1),對照圖4的串行通訊時序,在SDATA端實際需要通信的DATA位就是32位。假設MCLK外部輸入時鐘頻率為20MHz,DDS的最小的頻率分辨率為:

          IOUT輸出20MHz時(實際上是不可能的,或是輸出的信號譜將非常差),對應的32位頻率控制寄存器的值全為1;輸出5.3125MHz時,對應數值為(5.3125MHz/20MHz)×232,將所得到的十進制值轉化為二進制對應32位頻率控制寄存器的值。根據圖4的串行時序,通過微處理器將相應的32位值寫入DDS緩沖區(qū)后,在IOUT引腳端將會產生5.3125MHz正弦波頻率信號的輸出。其峰峰值在50歐姆負載的情況下為1V左右,具體的峰谷、峰尖的電平可以通過引腳FSJUST端的外接電阻值進行調節(jié)。

          在具體的實際應用中,對輸出的5.3125MHz正弦波信號,需要經過濾波、整形、放大等處理后才能引入到其它電路環(huán)節(jié)中。在設計時,為得到比較純凈的信號譜,在IOUT端輸出后通??紤]接一帶通濾波器或低通濾波器。

          3.jpg

          圖3 DDS外圍電路原理圖

          4.jpg

          圖4 DDS串行通訊時序示意圖


          上一頁 1 2 下一頁

          關鍵詞: 9852 AD 芯片 原子頻標

          評論


          相關推薦

          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();