基于網(wǎng)絡(luò)分析儀測量高速模數(shù)轉(zhuǎn)換器輸入阻抗詳解
然后只需以差分配置將焊件板(圖3b所示的第一塊板)連接到網(wǎng)絡(luò)分析儀。應(yīng)為該板提供電源和時鐘,以確保能捕捉到測量過程中轉(zhuǎn)換器內(nèi)部前端設(shè)計的任何寄生變化。
焊件板“上電”后,轉(zhuǎn)換器看起來像是在典型應(yīng)用中。在此測量中,將先前在切割裸板的各端口(各模擬輸入走線)上測得的板寄生效應(yīng)(圖6)去掉。最終將從當(dāng)前ADC測量結(jié)果中減去板寄生效應(yīng),僅在圖中顯示封裝和內(nèi)部前端阻抗(圖7)。
圖6:這條曲線說明了沒去掉前端電路寄生效應(yīng)的ADC阻抗。
圖7: 這條曲線說明了去掉前端電路寄生效應(yīng)的ADC的阻抗。
轉(zhuǎn)換器輸入阻抗計算:數(shù)學(xué)方法
現(xiàn)在我們通過數(shù)學(xué)方法分析一下,看花在實驗室測量上的時間是否值得??蓪θ魏无D(zhuǎn)換器的內(nèi)部輸入阻抗實施建模(圖8)。該網(wǎng)絡(luò)是表述跟蹤模式下(即采樣時)輸入網(wǎng)絡(luò)交流性能的一個良好模型。
圖8:跟蹤模式(實施采樣時)下,ADC內(nèi)部輸入網(wǎng)絡(luò)的AC性能。
ADC internal input Z:ADC內(nèi)部輸入阻抗
通常,任何數(shù)據(jù)手冊都會給出某種形式的靜態(tài)差分輸入阻抗、以及通過仿真獲得的R||C值。本文所述方式所用的模型非常簡單,目的是求出高度近似值并簡化數(shù)學(xué)計算。否則,如果等效阻抗模型還包括采樣時鐘速率和占空比,那么很小的阻抗變化就可能使數(shù)學(xué)計算變得異常困難。
還應(yīng)注意,這些值是ADC內(nèi)部電路在跟蹤模式下采樣過程(即對信號進行實際采樣)中的反映。在保持模式下,采樣開關(guān)斷開,輸入前端電路與內(nèi)部采樣處理或緩沖器隔離。
推導(dǎo)該簡單模型(圖8)并求解實部和虛部:
Z0 = R, Z1 = 1/s • C, s = j • 2 • π • f, f = frequency
ZTOTAL = 1/(1/Z0 + 1/Z1) = 1/(1/R + s • C) = 1/((1 + s • R • C)/R)) = R/(1 + s • R • C)
代換s并乘以共軛復(fù)數(shù):
ZTOTAL = R/(1 + j • 2 • π • f • R • C) = R/(1 + j • 2 • π • f • R • C) • ((1 – j • 2 • π • f • R • C)/(1 – j • 2 • π • f • R • C)) = (R –j • 2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)
求出“實部”(Real)和“虛部”(Imag):
ZTOTAL = Real + j • Imag = R/(1 + (2 • π • f • R • C)2) + j • (–2 • π • f • R2 • C)/(1 + 2 • π • f • R • C)2)
Real = R/(1 + (2 • π • f • R • C)2) Imag = (–2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)
這一數(shù)學(xué)模型與跟蹤模式下的交流仿真非常吻合(圖9和圖10)。這個簡單模型的主要誤差源是阻抗在高頻時的建立水平。注意,這些值一般是通過一系列仿真得出的,相當(dāng)準(zhǔn)確。
圖9:顯示的是轉(zhuǎn)換器輸入阻抗曲線的“實部”部分,它比較了經(jīng)測量、數(shù)學(xué)和仿真方法得到的結(jié)果。
圖10:顯示的是轉(zhuǎn)換器輸入阻抗曲線的“虛部”部分,它比較了經(jīng)測量、數(shù)學(xué)和仿真方法得到的結(jié)果。
現(xiàn)在討論圖9和圖10所示的測量結(jié)果。所有三條曲線并不完全重合,但很接近,這是因為某些測量誤差總是存在的,而且仿真可能并未考慮到轉(zhuǎn)換器的所有封裝寄生效應(yīng)。因此,一定程度的不一致是正常的。盡管如此,這些曲線在形狀和輪廓方面都很相似,相當(dāng)近似地給出了轉(zhuǎn)換器的阻抗特性。
注意,網(wǎng)絡(luò)分析儀只能在其特征阻抗標(biāo)準(zhǔn)乘/除10倍的范圍內(nèi)提供可信的測量結(jié)果。如果網(wǎng)絡(luò)分析儀的特征阻抗為50Ω,那么只能在5Ω到500Ω的范圍內(nèi)實現(xiàn)令人滿意的測量。這也是數(shù)據(jù)手冊中更愿意列出簡單R||C值的原因之一。
ADC輸入阻抗總結(jié)
了解轉(zhuǎn)換器阻抗是信號鏈設(shè)計的一個重要內(nèi)容??傊舴钦嬲枰?,為什么要浪費大筆資金去購買昂貴的測試設(shè)備,或者費力去測量阻抗?不如使用數(shù)據(jù)手冊提供的RC并聯(lián)組合阻抗并稍加簡單計算,這種獲取轉(zhuǎn)換器阻抗曲線的方法更快捷、更輕松。
還應(yīng)注意,工藝電阻容差可高達±20%。即使費盡辛苦去測量任何器件的輸入或輸出阻抗,也只能獲取一個數(shù)據(jù)點(當(dāng)然,除非測量多個批次的許多器件隨溫度和電源電壓變化的情況)。請使用數(shù)據(jù)手冊中的仿真R||C值,它提供了關(guān)于特征阻抗與頻率關(guān)系的足夠信息,由此可以設(shè)計出正常工作的信號鏈。
接地電阻相關(guān)文章:接地電阻測試方法
評論