基于DSP的車載導航系統(tǒng)硬件電路設計與實現(xiàn)
摘要 為解決車輛在行駛中對交通信息的了解,文中針對車載導航系統(tǒng)功能需求,設計了基于DSP芯片的車載導航系統(tǒng),提出了一種基于TMS3 20C6713B的DSP處理器車載導航系統(tǒng)設計方案,介紹了系統(tǒng)的硬件設計和實現(xiàn)方法。該系統(tǒng)具有結構簡單、可靠性高、維護方便,且有較好地繼承性等特點。
本文引用地址:http://www.ex-cimer.com/article/201610/309927.htm數(shù)字信號微處理器DSP具有高速運行與數(shù)據(jù)處理的功能,以其高性能和低功耗的優(yōu)勢為實時導航系統(tǒng)的數(shù)學計算提供了有效的硬件平臺。在現(xiàn)代武器裝備中,設計了基于DSP芯片的車載導航系統(tǒng),其在民用和軍事領域均發(fā)揮著重要作用,系統(tǒng)具有高可靠性、安全性等特點。
1 車載導航系統(tǒng)工作原理
車載導航系統(tǒng)的主要功能是定時采集陀螺正交編碼信號、加速度計的輸入和里程計輸入信號,并對采集的數(shù)據(jù)進行必要的處理,以實現(xiàn)導航解算。同時將采集數(shù)據(jù)通過RS422總線和CAN總線發(fā)送至地面監(jiān)測設備;并通過RS422總線接收相關的命令及參數(shù)。該系統(tǒng)結構如圖1所示。
2 系統(tǒng)硬件設計
2.1 處理器及存儲器設計
車載導航系統(tǒng)電路采用TI公司的TMS320C6713B-A200作為DSP,該DSP芯片標稱主頻為200 MHz,工作在160 MHz主頻時DSP處理能力為1600 MI·s-1/1 200MFLOPS。使用40 MHz的晶振作為DSP的時鐘輸入,經(jīng)內(nèi)部鎖相環(huán)倍頻后作為DSP工作的時鐘,使用一片TPS70345電壓調(diào)整器為其提供3.3 V的IO電壓和1.2 V的內(nèi)核電壓;采用一片容量為16 MB的MT48LC4M3282TG-7IT芯片作為SDRAM的存儲器,存儲器直接接入DSP的EMIF總線上,SDRAM芯片的地址線BA1、BA0和A11~A0接DSP芯片的EA15~EA2,數(shù)據(jù)線D31~D0接ED31~ED0。FlashRom芯片的地址線A22~A0接DSP芯片的GP13~CP11和EA21~EA2,數(shù)據(jù)線DQ15~DQ0,接ED15~ED0,初始化時GP13~GP13個引腳的狀態(tài)為高,SDRAM芯片的片選信號接DSP芯片的CE0;采用一片容量為16 MB的S29GL128N10TFIR1芯片為FlashRom存儲器,F(xiàn)lashRom芯片的片選信號接DSP芯片的CE1。之所以DSP芯片的CE1接到FlashRom的片選上,是因其引導方式采用從ROM加載,BOOT程序存放在FlashRom存儲器中。存儲器的讀寫信號均接到DSP芯片的AWE信號上。DSP通過EMIF總線接口訪問外部存儲器,可通過操作寄存器控制對外部存儲器的訪問,簡化了電路的設計。
2.2 電源設計
車載導航系統(tǒng)輸入電源為27±9 V,經(jīng)MHF+28515將24 V轉(zhuǎn)換為+15 V和+5 V的電壓,MHF+28515的輸入電壓范圍為16~48 V,輸出功率15 W,其中+5 V電壓輸出最大功率為7.5 W,電流1 500 mA,+15 V電壓輸出功率最大分別為5 W,電路330 mA。由于車載導航系統(tǒng)電路自身+5 V電源使用的電流約為1000 mA,所以能提供+5 V,電流>140 mA的輸出給外部使用,為滿足系統(tǒng)中各部件的供電要求,設計了車載導航系統(tǒng)供電系統(tǒng)。
MHF+28515輸出的+5 V電源為整個模塊提供數(shù)字電源,其中CAN總線協(xié)議芯片等部分+5 V工作的芯片直接使用該電源;其他電路使用經(jīng)轉(zhuǎn)換后的電源其處理方法包括:通過電壓調(diào)整器TPS70345將+5 V電源轉(zhuǎn)換成3.3 V和1.2 V電源,其中3.3 V供DSP外圍電路及SDRAM、Flash等芯片使用,1.2 V供DSP內(nèi)核使用;通過電壓調(diào)整器TPS70351將+5 V電源轉(zhuǎn)換成3.3 V和1.8 V電壓,其中3.3 V供FPGA外圍電路、光耦等芯片使用,1.8 V供FPGA內(nèi)核使用;通過兩個DC/DC模塊NKE0503將+5 V電源轉(zhuǎn)換成3.3 V電壓,一個供RS422隔離電路中的MAX3490及光耦使用,另一個供RS232隔離電路中的MAX3232及光耦使用。通過一個DC/DC模塊NME0505將+5 V電源進行隔離,供MAX481、CAN總線收發(fā)器和其通路上的光耦使用。MHF+28515輸出的±15 V電源為整個模塊提供模擬電源,其中+15 V電壓通過三端穩(wěn)壓器JW78M05將電壓轉(zhuǎn)換成+5 V模擬電壓,供LM3940IMP和REF196使用;+5 V模擬電壓通過LM3940IMP轉(zhuǎn)換成3.3 V模擬電壓,為運放供電;+5 V模擬電壓通過REF196轉(zhuǎn)換成3.3 V模擬電壓,為電橋供電;+15 V和-15 V電壓則是為運放OP497供電。
2.3 輸入信號
車載導航系統(tǒng)電路輸入信號有3路加速度計信號、3路陀螺信號、兩路里程計信號、兩路標頻信號、一路行車狀態(tài)信號、9路狀態(tài)檢測信號和10路測溫信號。
加速度計信號的信號形式為可逆脈沖,幅值TTL,滿量程為256 kHz,經(jīng)3路16位計數(shù)器計數(shù),上升沿觸發(fā),中斷5鎖存,加速度計信號采用RC濾波和帶施密特觸發(fā)輸入的反向器進行整形處理,然后通過74LVC244進行電平轉(zhuǎn)換后引入FPGA中。
陀螺信號的信號形式為正交編碼信號,幅值高電平4~5 V,低電平0~0.8 V,電流≤8 mA,頻率≤1.5 MHz,相位差90°±20°,經(jīng)3路16位計數(shù)器計數(shù),上升沿觸發(fā),中斷5鎖存,陀螺信號也與加速度計信號相同,進行整形處理。而標頻信號頻率為128 kHz,幅值TTL,也信
號需整形。因此,標頻信號的處理形式和加速度計信號處理方法相同。
里程計信號包括兩路里程計信號、1路行車狀態(tài)信號和1路里程計地,幅值12 V,驅(qū)動能力30 mA,需光耦隔離,設置兩個16位計數(shù)器和1位狀態(tài)寄存器,分別記錄里程計脈沖輸入和狀態(tài)信息,里程計脈沖上升沿觸發(fā)計數(shù),中斷5鎖存;要求行車狀態(tài)信號State可用命令使能和禁止,使能狀態(tài)下當State=1時,里程計信號加法計數(shù);當State=0時,減法計數(shù);禁止狀態(tài)下里程計信號加法計數(shù),里程計信號先經(jīng)RC濾波電路和保護二極管,然后經(jīng)光隔進入FPGA。
狀態(tài)檢測信號包括3路跳模檢測信號、3路高壓狀態(tài)信號和3路機抖狀態(tài)信號,信號形式均為開關量,幅值為TTL,機抖狀態(tài)信號和高壓狀態(tài)信號需光耦隔離。跳模檢測信號處理形式和參數(shù)選擇與加速度計信號相同;高壓狀態(tài)信號和機抖檢測信號處理形式則與陀螺信號一致。
測溫信號包括10路測溫電阻輸入和1路測溫電阻輸入公共端,溫度范圍在-45~+70℃,測溫電阻與模塊上3個高精度電阻組成電橋,按照電橋工作原理,橋臂電阻的阻值應小于測溫電阻的最小值,并應當考慮一定的冗余,溫度系數(shù)的計算公式為R0×3.85×10-3,其中R0是0℃電阻,由于采用了高精度電阻和12位的AD,A/D轉(zhuǎn)換精度>0.5 ℃,可用多路開關實現(xiàn)。電橋兩臂中點分別接入運算放大器進行跟隨處理,再經(jīng)后級放大后由A/D轉(zhuǎn)換芯片采集溫度測試結果,A/D轉(zhuǎn)換芯片采用串行接口芯片,與DSP的McBSP1接口連接,該芯片分辨率為12位,并具有10 μs的轉(zhuǎn)換時間及最大11路的A/D輸入。
評論