<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 9G-STM32 EWARM開發(fā)過程簡介之五

          9G-STM32 EWARM開發(fā)過程簡介之五

          作者: 時間:2016-11-29 來源:網(wǎng)絡 收藏
          9G-STM32 EWARM開發(fā)過程簡介之五--移植FATFS的NANDFLASH驅動

          一,建立工程FATFS源碼
          1,在http://elm-chan.org/fsw/ff/00index_e.html上下載ff007c.zip,并把ff007c.zip里面的
          src文件夾復制到D:worksEK-STM3210E-UCOSII下,并改名為Fatfs;
          2,在IDE工程中右擊選擇“Add Group”建立“FATFS”文件組,并在“FATFS”上右擊選擇“Add Files”添加
          D:worksEK-STM3210E-UCOSIIFatfs下的C文件;
          3,把D:worksEK-STM3210E-UCOSIIFatfs文件夾目錄添加到項目頭文件搜索路徑中,如:
          $PROJ_DIR$....Fatfs

          二,移植NANDFLASH驅動接口
          1,把stm32f10x_stdperiph_lib_v3.0.0ProjectExamplesFSMCNAND下的fsmc_nand.c復制到
          D:worksEK-STM3210E-UCOSIIDrivers下,并加入到工程的DRV文件組;
          2,把stm32f10x_stdperiph_lib_v3.0.0ProjectExamplesFSMCNAND下的fsmc_nand.h復制到
          D:worksEK-STM3210E-UCOSIIInclude下;
          3,在fsmc_nand.c前添加上#include "stm32f10x_conf.h",并把系統(tǒng)中的 "stm32f10x_conf.h"
          文件的/* #include "stm32f10x_fsmc.h" */注釋打開;

          本文引用地址:http://www.ex-cimer.com/article/201611/323209.htm

          三,修改FATFS的配置文件
          1,把D:worksEK-STM3210E-UCOSIIFatfs下的ff.h中的宏定義:
          #define_USE_MKFS0
          #define _CODE_PAGE932
          #define _FS_RPATH0
          #define_MAX_SS512
          修改為:
          #define_USE_MKFS1
          #define _CODE_PAGE936
          #define_MAX_SS2048
          #define _FS_RPATH1
          2,把D:worksEK-STM3210E-UCOSIIFatfs下的integer.h的宏定義:
          typedef enum { FALSE = 0, TRUE } BOOL;
          修改為:
          typedef bool BOOL;//typedef enum { FALSE = 0, TRUE } BOOL;
          四,修改FATFS的DISK/IO接口
          1,把diskio.c復制后改名為nandio.c替換掉工程中的diskio.c,并添加到EWARM的工程中的
          “FATFS”文件組;
          2,媒介初始化直接返回正常的0:
          DSTATUS disk_initialize (BYTE drv)
          { return 0;}
          3,媒介狀態(tài)查詢直接返回正常的0:
          DSTATUS disk_status (BYTE drv)
          { return 0;}
          4,取系統(tǒng)系統(tǒng)直接返回0(自己可以按格式修改為真實時間):
          DWORD get_fattime (void)
          { return 0;}
          5,媒介控制接口:
          DRESULT disk_ioctl (BYTE drv,BYTE ctrl,void *buff)
          {
          DRESULT res = RES_OK;
          uint32_t result;

          if (drv){return RES_PARERR;}

          switch(ctrl)
          {
          case CTRL_SYNC:
          break;
          case GET_BLOCK_SIZE:
          *(DWORD*)buff = NAND_BLOCK_SIZE;
          break;
          case GET_SECTOR_COUNT:
          *(DWORD*)buff = (((NAND_MAX_ZONE/2) * NAND_ZONE_SIZE) * NAND_BLOCK_SIZE);
          break;
          case GET_SECTOR_SIZE:
          *(WORD*)buff = NAND_PAGE_SIZE;
          break;
          default:
          res = RES_PARERR;
          break;
          }
          return res;
          }
          6,媒介多扇區(qū)讀接口:
          DRESULT disk_read (BYTE drv,BYTE *buff,DWORD sector,BYTE count)
          {
          uint32_t result;

          if (drv || !count){ return RES_PARERR;}
          result = FSMC_NAND_ReadSmallPage(buff, sector, count);
          if(result & NAND_READY){ return RES_OK; }
          else { return RES_ERROR; }
          }
          7,媒介多扇區(qū)寫接口:
          #if _READONLY == 0
          DRESULT disk_write (BYTE drv,const BYTE *buff,DWORD sector,BYTE count)
          {
          uint32_t result;
          uint32_t BackupBlockAddr;
          uint32_t WriteBlockAddr;
          uint16_t IndexTmp = 0;
          uint16_t OffsetPage;

          /* NAND memory write page at block address*/
          WriteBlockAddr = (sector/NAND_BLOCK_SIZE);
          /* NAND memory backup block address*/
          BackupBlockAddr = (WriteBlockAddr + (NAND_MAX_ZONE/2)*NAND_ZONE_SIZE);
          OffsetPage = sector%NAND_BLOCK_SIZE;

          if (drv || !count){ return RES_PARERR;}

          /* Erase the NAND backup Block */
          result = FSMC_NAND_EraseBlock(BackupBlockAddr*NAND_BLOCK_SIZE);

          /* Backup the NAND Write Block to High zone*/

          for (IndexTmp = 0; IndexTmp < NAND_BLOCK_SIZE; IndexTmp++ )
          {
          FSMC_NAND_MoveSmallPage (WriteBlockAddr*NAND_BLOCK_SIZE+IndexTmp,BackupBlockAddr*NAND_BLOCK_SIZE+IndexTmp);
          }

          /* Erase the NAND Write Block */
          result = FSMC_NAND_EraseBlock(WriteBlockAddr*NAND_BLOCK_SIZE);

          /*return write the block with modify*/
          for (IndexTmp = 0; IndexTmp < NAND_BLOCK_SIZE; IndexTmp++ )
          {
          if((IndexTmp>=OffsetPage)&&(IndexTmp < (OffsetPage+count)))
          {
          FSMC_NAND_WriteSmallPage((uint8_t *)buff, WriteBlockAddr*NAND_BLOCK_SIZE+IndexTmp, 1);
          buff = (uint8_t *)buff + NAND_PAGE_SIZE;
          }
          else
          {
          FSMC_NAND_MoveSmallPage (BackupBlockAddr*NAND_BLOCK_SIZE+IndexTmp,WriteBlockAddr*NAND_BLOCK_SIZE+IndexTmp);
          }
          }

          if(result == NAND_READY){ return RES_OK;}
          else { return RES_ERROR;}
          }
          #endif /* _READONLY */
          五,調(diào)用接口及測試代碼
          1,調(diào)用接口,先初始化FSMC和NANDFLASH:
          //NANDFLASH HY27UF081G2A-TPCB
          #define NAND_HY_MakerID 0xAD
          #define NAND_HY_DeviceID 0xF1

          /* Configure the NAND FLASH */
          void NAND_Configuration(void)
          {
          NAND_IDTypeDef NAND_ID;

          /* Enable the FSMC Clock */
          RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);

          /* FSMC Initialization */
          FSMC_NAND_Init();

          /* NAND read ID command */
          FSMC_NAND_ReadID(&NAND_ID);

          /* Verify the NAND ID */
          if((NAND_ID.Maker_ID == NAND_ST_MakerID) && (NAND_ID.Device_ID == NAND_ST_DeviceID))
          {
          printf("ST NANDFLASH");
          }
          else
          if((NAND_ID.Maker_ID == NAND_HY_MakerID) && (NAND_ID.Device_ID == NAND_HY_DeviceID))
          {
          printf("HY27UF081G2A-TPCB");
          }
          printf(" ID = 0x%x%x%x%x ",NAND_ID.Maker_ID,NAND_ID.Device_ID,NAND_ID.Third_ID,NAND_ID.Fourth_ID);
          }
          2,然后對媒介格式化,創(chuàng)建讀寫文件:
          void test_fatfs(void)
          {
          FATFS fs;
          FIL fl;
          FATFS *pfs;
          DWORD clust;
          unsigned int r,w,i;
          FRESULT res;

          //NF_CHKDSK(0,1024);
          display_page(0,0);

          // for mount
          res=f_mount(0,&fs);
          printf("f_mount=%x ",res);

          // for format
          //res=f_mkfs(0,1,2048);//MUST Format for New NANDFLASH !!!
          //printf("f_mkfs=%x ",res);

          // for
          pfs=&fs;
          res = f_getfree("/", &clust, &pfs);
          printf("f_getfree=%x ",res);
          printf("%lu MB total drive space."
          "%lu MB available.",
          (DWORD)(pfs->max_clust - 2) * pfs->csize /2/1024,
          clust * pfs->csize /2/1024);

          // for read
          res=f_open(&fl,"/test2.dat",FA_OPEN_EXISTING | FA_READ);
          printf("f_open=%x ",res);
          for(i=0;i<2;i++)
          {
          for(r = 0; r < NAND_PAGE_SIZE; r++)
          {
          RxBuffer[r]= 0xff;
          }

          res=f_read(&fl,RxBuffer,NAND_PAGE_SIZE,&r);
          printf("f_read=%x ",res);
          if(res || r == 0)break;
          for(r = 0; r < NAND_PAGE_SIZE; r++)
          {
          printf("D[%08x]=%02x ",(i*NAND_PAGE_SIZE+r),RxBuffer[r]);
          if((r%8)==7)
          {printf("");}
          }

          }
          f_close(&fl);
          // for write
          res=f_open(&fl,"/test2.dat",FA_CREATE_ALWAYS | FA_WRITE);
          printf("f_open=%x ",res);
          for(i=0;i<2;i++)
          {
          for(w = 0; w < NAND_PAGE_SIZE; w++)
          {
          TxBuffer[w]=((w<<0)&0xff);
          }
          res=f_write(&fl,TxBuffer,NAND_PAGE_SIZE,&w);
          printf("f_write=%x ",res);
          if(res || w
          }
          f_close(&fl);

          // for umount
          f_mount(0,NULL);
          }

          六,編寫NANDFLASH接口
          1,fsmc_nand.c文件:
          /* Includes ------------------------------------------------------------------*/
          #include "fsmc_nand.h"
          #include "stm32f10x_conf.h"

          /** @addtogroup StdPeriph_Examples
          * @{
          */

          /** @addtogroup FSMC_NAND
          * @{
          */

          /* Private typedef -----------------------------------------------------------*/
          /* Private define ------------------------------------------------------------*/

          #define FSMC_Bank_NAND FSMC_Bank2_NAND
          #define Bank_NAND_ADDR Bank2_NAND_ADDR
          #define Bank2_NAND_ADDR ((uint32_t)0x70000000)

          /* Private macro -------------------------------------------------------------*/
          /* Private variables ---------------------------------------------------------*/
          /* Private function prototypes -----------------------------------------------*/
          /* Private functions ---------------------------------------------------------*/

          /**
          * @brief Configures the FSMC and GPIOs to interface with the NAND memory.
          * This function must be called before any write/read operation
          * on the NAND.
          * @param None
          * @retval : None
          */
          void FSMC_NAND_Init(void)
          {
          GPIO_InitTypeDef GPIO_InitStructure;
          FSMC_NANDInitTypeDef FSMC_NANDInitStructure;
          FSMC_NAND_PCCARDTimingInitTypeDef p;

          RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
          RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);

          /*-- GPIO Configuration ------------------------------------------------------*/
          /* CLE, ALE, D0->D3, NOE, NWE and NCE2 NAND pin configuration */
          GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_14 | GPIO_Pin_15 |
          GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 |
          GPIO_Pin_7;
          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
          GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

          GPIO_Init(GPIOD, &GPIO_InitStructure);

          /* D4->D7 NAND pin configuration */
          GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;

          GPIO_Init(GPIOE, &GPIO_InitStructure);


          /* NWAIT NAND pin configuration */
          GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
          GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;

          GPIO_Init(GPIOD, &GPIO_InitStructure);

          /* INT2 NAND pin configuration */
          GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
          GPIO_Init(GPIOG, &GPIO_InitStructure);

          /*-- FSMC Configuration ------------------------------------------------------*/
          p.FSMC_SetupTime = 0x1;
          p.FSMC_WaitSetupTime = 0x3;
          p.FSMC_HoldSetupTime = 0x2;
          p.FSMC_HiZSetupTime = 0x1;

          FSMC_NANDInitStructure.FSMC_Bank = FSMC_Bank2_NAND;
          FSMC_NANDInitStructure.FSMC_Waitfeature = FSMC_Waitfeature_Enable;
          FSMC_NANDInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
          FSMC_NANDInitStructure.FSMC_ECC = FSMC_ECC_Enable;
          FSMC_NANDInitStructure.FSMC_ECCPageSize = FSMC_ECCPageSize_512Bytes;
          FSMC_NANDInitStructure.FSMC_TCLRSetupTime = 0x00;
          FSMC_NANDInitStructure.FSMC_TARSetupTime = 0x00;
          FSMC_NANDInitStructure.FSMC_CommonSpaceTimingStruct = &p;
          FSMC_NANDInitStructure.FSMC_AttributeSpaceTimingStruct = &p;

          FSMC_NANDInit(&FSMC_NANDInitStructure);

          /* FSMC NAND Bank Cmd Test */
          FSMC_NANDCmd(FSMC_Bank2_NAND, ENABLE);
          }

          /**
          * @brief Reads NAND memorys ID.
          * @param NAND_ID: pointer to a NAND_IDTypeDef structure which will hold
          * the Manufacturer and Device ID.
          * @retval : None
          */
          void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID)
          {
          uint32_t data = 0;

          /* Send Command to the command area */
          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READID;
          /* Send Address to the address area */
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = NAND_CMD_IDADDR;

          /* Sequence to read ID from NAND flash */
          data = *(__IO uint32_t *)(Bank_NAND_ADDR | DATA_AREA);

          NAND_ID->Maker_ID = DATA_1st_CYCLE (data);
          NAND_ID->Device_ID = DATA_2nd_CYCLE (data);
          NAND_ID->Third_ID = DATA_3rd_CYCLE (data);
          NAND_ID->Fourth_ID = DATA_4th_CYCLE (data);
          }
          /**
          * @brief This routine is for move one 2048 Bytes Page size to an other 2048 Bytes Page.
          * the copy-back program is permitted just between odd address pages or even address pages.
          * @param SourcePageAddress: Source page address
          * @param TargetPageAddress: Target page address
          * @retval : New status of the NAND operation. This parameter can be:
          * - NAND_TIMEOUT_ERROR: when the previous operation generate
          * a Timeout error
          * - NAND_READY: when memory is ready for the next operation
          * And the new status of the increment address operation. It can be:
          * - NAND_VALID_ADDRESS: When the new address is valid address
          * - NAND_INVALID_ADDRESS: When the new address is invalid address
          */
          uint32_t FSMC_NAND_MoveSmallPage(uint32_t SourcePageAddress, uint32_t TargetPageAddress)
          {
          uint32_t status = NAND_READY ;
          uint32_t data = 0xff;

          /* Page write command and address */
          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE0;

          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(SourcePageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(SourcePageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(SourcePageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(SourcePageAddress);

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE1;

          while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE2;

          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(TargetPageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(TargetPageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(TargetPageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(TargetPageAddress);

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE3;

          while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

          /* Check status for successful operation */
          status = FSMC_NAND_GetStatus();

          data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
          if(!(data&0x1)) status = NAND_READY;

          return (status);
          }


          上一頁 1 2 下一頁

          評論


          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();