<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 9G-STM32 EWARM開發(fā)過程簡介之五

          9G-STM32 EWARM開發(fā)過程簡介之五

          作者: 時間:2016-11-29 來源:網絡 收藏

          /**
          * @brief This routine is for writing one or several 2048 Bytes Page size.
          * @param pBuffer: pointer on the Buffer containing data to be written
          * @param PageAddress: First page address
          * @param NumPageToWrite: Number of page to write
          * @retval : New status of the NAND operation. This parameter can be:
          * - NAND_TIMEOUT_ERROR: when the previous operation generate
          * a Timeout error
          * - NAND_READY: when memory is ready for the next operation
          * And the new status of the increment address operation. It can be:
          * - NAND_VALID_ADDRESS: When the new address is valid address
          * - NAND_INVALID_ADDRESS: When the new address is invalid address
          */

          uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToWrite)
          {
          uint32_t index = 0x00, numpagewritten = 0x00,addressstatus = NAND_VALID_ADDRESS;
          uint32_t status = NAND_READY, size = 0x00;
          uint32_t data = 0xff;

          while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
          {
          /* Page write command and address */
          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;

          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

          /* Calculate the size */
          size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);

          /* Write data */
          for(; index < size; index++)
          {
          *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
          }

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE1;

          while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

          /* Check status for successful operation */
          status = FSMC_NAND_GetStatus();

          data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
          if(!(data&0x1)) status = NAND_READY;

          if(status == NAND_READY)
          {
          numpagewritten++; NumPageToWrite--;

          /* Calculate Next small page Address */
          if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))
          {addressstatus = NAND_INVALID_ADDRESS;}
          }
          }

          return (status | addressstatus);
          }

          /**
          * @brief This routine is for sequential read from one or several
          * 2048 Bytes Page size.
          * @param pBuffer: pointer on the Buffer to fill
          * @param PageAddress: First page address
          * @param NumPageToRead: Number of page to read
          * @retval : New status of the NAND operation. This parameter can be:
          * - NAND_TIMEOUT_ERROR: when the previous operation generate
          * a Timeout error
          * - NAND_READY: when memory is ready for the next operation
          * And the new status of the increment address operation. It can be:
          * - NAND_VALID_ADDRESS: When the new address is valid address
          * - NAND_INVALID_ADDRESS: When the new address is invalid address
          */


          uint32_t FSMC_NAND_ReadSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToRead)
          {
          uint32_t index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;
          uint32_t status = NAND_READY, size = 0x00;

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ1;

          while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
          {
          /* Page Read command and page address */

          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ2;

          while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

          /* Calculate the size */
          size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);

          /* Get Data into Buffer */
          for(; index < size; index++)
          {
          pBuffer[index]= *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
          }

          numpageread++;NumPageToRead--;

          /* Calculate page address */
          if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))
          {addressstatus = NAND_INVALID_ADDRESS;}
          }

          status = FSMC_NAND_GetStatus();

          return (status | addressstatus);
          }

          /**
          * @brief This routine erase complete block from NAND FLASH
          * @param PageAddress: Any address into block to be erased
          * @retval :New status of the NAND operation. This parameter can be:
          * - NAND_TIMEOUT_ERROR: when the previous operation generate
          * a Timeout error
          * - NAND_READY: when memory is ready for the next operation
          */

          uint32_t FSMC_NAND_EraseBlock(uint32_t PageAddress)
          {
          uint32_t data = 0xff, status = NAND_ERROR;

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;

          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);
          *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);

          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;

          while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );

          /* Read status operation ------------------------------------ */
          FSMC_NAND_GetStatus();

          data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);

          if(!(data&0x1)) status = NAND_READY;

          return (status);
          }

          /**
          * @brief This routine reset the NAND FLASH
          * @param None
          * @retval :NAND_READY
          */

          uint32_t FSMC_NAND_Reset(void)
          {
          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;

          return (NAND_READY);
          }

          /**
          * @brief Get the NAND operation status
          * @param None
          * @retval :New status of the NAND operation. This parameter can be:
          * - NAND_TIMEOUT_ERROR: when the previous operation generate
          * a Timeout error
          * - NAND_READY: when memory is ready for the next operation
          */


          uint32_t FSMC_NAND_GetStatus(void)
          {
          uint32_t timeout = 0x1000000, status = NAND_READY;

          status = FSMC_NAND_ReadStatus();

          /* Wait for a NAND operation to complete or a TIMEOUT to occur */
          while ((status != NAND_READY) &&( timeout != 0x00))
          {
          status = FSMC_NAND_ReadStatus();
          timeout --;
          }

          if(timeout == 0x00)
          {
          status = NAND_TIMEOUT_ERROR;
          }

          /* Return the operation status */
          return (status);
          }

          /**
          * @brief Reads the NAND memory status using the Read status command
          * @param None
          * @retval :The status of the NAND memory. This parameter can be:
          * - NAND_BUSY: when memory is busy
          * - NAND_READY: when memory is ready for the next operation
          * - NAND_ERROR: when the previous operation gererates error
          */

          uint32_t FSMC_NAND_ReadStatus(void)
          {
          uint32_t data = 0x00, status = NAND_BUSY;

          /* Read status operation ------------------------------------ */
          *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;
          data = *(__IO uint8_t *)(Bank_NAND_ADDR);

          if((data & NAND_ERROR) == NAND_ERROR)
          {
          status = NAND_ERROR;
          }
          else if((data & NAND_READY) == NAND_READY)
          {
          status = NAND_READY;
          }
          else
          {
          status = NAND_BUSY;
          }

          return (status);
          }
          2,fsmc_nand.h文件:
          /* Define to prevent recursive inclusion -------------------------------------*/
          #ifndef __FSMC_NAND_H
          #define __FSMC_NAND_H

          /* Includes ------------------------------------------------------------------*/
          #include "stm32f10x.h"

          /* Exported types ------------------------------------------------------------*/
          typedef struct
          {
          uint8_t Maker_ID;
          uint8_t Device_ID;
          uint8_t Third_ID;
          uint8_t Fourth_ID;
          }NAND_IDTypeDef;

          typedef struct
          {
          uint16_t Zone;
          uint16_t Block;
          uint16_t Page;
          } NAND_ADDRESS;

          /* Exported constants --------------------------------------------------------*/
          /* NAND Area definition for STM3210E-EVAL Board RevD */
          #define CMD_AREA (uint32_t)(1<<16) /* A16 = CLE high */
          #define ADDR_AREA (uint32_t)(1<<17) /* A17 = ALE high */
          #define DATA_AREA ((uint32_t)0x00000000)

          /* FSMC NAND memory command */
          #defineNAND_CMD_READ1 ((uint8_t)0x00)
          #define NAND_CMD_READ2 ((uint8_t)0x30)

          #define NAND_CMD_WRITE0 ((uint8_t)0x80)
          #define NAND_CMD_WRITE1 ((uint8_t)0x10)

          #define NAND_CMD_MOVE0 ((uint8_t)0x00)
          #define NAND_CMD_MOVE1 ((uint8_t)0x35)
          #define NAND_CMD_MOVE2 ((uint8_t)0x85)
          #define NAND_CMD_MOVE3 ((uint8_t)0x10)

          #define NAND_CMD_ERASE0 ((uint8_t)0x60)
          #define NAND_CMD_ERASE1 ((uint8_t)0xD0)

          #define NAND_CMD_READID ((uint8_t)0x90)
          #define NAND_CMD_IDADDR ((uint8_t)0x00)

          #define NAND_CMD_STATUS ((uint8_t)0x70)
          #define NAND_CMD_RESET ((uint8_t)0xFF)

          /* NAND memory status */
          #define NAND_VALID_ADDRESS ((uint32_t)0x00000100)
          #define NAND_INVALID_ADDRESS ((uint32_t)0x00000200)
          #define NAND_TIMEOUT_ERROR ((uint32_t)0x00000400)
          #define NAND_BUSY ((uint32_t)0x00000000)
          #define NAND_ERROR ((uint32_t)0x00000001)
          #define NAND_READY ((uint32_t)0x00000040)

          /* FSMC NAND memory parameters */
          //#define NAND_PAGE_SIZE ((uint16_t)0x0200) /* 512 bytes per page w/o Spare Area */
          //#define NAND_BLOCK_SIZE ((uint16_t)0x0020) /* 32x512 bytes pages per block */
          //#define NAND_ZONE_SIZE ((uint16_t)0x0400) /* 1024 Block per zone */
          //#define NAND_SPARE_AREA_SIZE ((uint16_t)0x0010) /* last 16 bytes as spare area */
          //#define NAND_MAX_ZONE ((uint16_t)0x0004) /* 4 zones of 1024 block */

          /* FSMC NAND memory HY27UF081G2A-TPCB parameters */
          #define NAND_PAGE_SIZE ((uint16_t)0x0800) /* 2048 bytes per page w/o Spare Area */
          #define NAND_BLOCK_SIZE ((uint16_t)0x0040) /* 64x2048 bytes pages per block */
          #define NAND_ZONE_SIZE ((uint16_t)0x0200) /* 512 Block per zone */
          #define NAND_SPARE_AREA_SIZE ((uint16_t)0x0040) /* last 64 bytes as spare area */
          #define NAND_MAX_ZONE ((uint16_t)0x0002) /* 2 zones of 1024 block */

          /* FSMC NAND memory data computation */
          #define DATA_1st_CYCLE(DATA) (uint8_t)((DATA)& 0xFF) /* 1st data cycle */
          #define DATA_2nd_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF00) >> 8) /* 2nd data cycle */
          #define DATA_3rd_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF0000) >> 16) /* 3rd data cycle */
          #define DATA_4th_CYCLE(DATA) (uint8_t)(((DATA)& 0xFF000000) >> 24) /* 4th data cycle */

          /* FSMC NAND memory HY27UF081G2A-TPCB address computation */
          #define ADDR_1st_CYCLE(PADDR) (uint8_t)(0x0) /* 1st addressing cycle */
          #define ADDR_2nd_CYCLE(PADDR) (uint8_t)(0x0)/* 2nd addressing cycle */
          #define ADDR_3rd_CYCLE(PADDR) (uint8_t)(PADDR & 0xFF) /* 3rd addressing cycle */
          #define ADDR_4th_CYCLE(PADDR) (uint8_t)((PADDR>>8) & 0xFF)/* 4th addressing cycle */

          /* Exported macro ------------------------------------------------------------*/
          /* Exported functions ------------------------------------------------------- */
          void FSMC_NAND_Init(void);
          void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID);
          uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToWrite);
          uint32_t FSMC_NAND_ReadSmallPage (uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToRead);
          uint32_t FSMC_NAND_MoveSmallPage (uint32_t SourcePageAddress, uint32_t TargetPageAddress);
          //uint32_t FSMC_NAND_WriteSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaTowrite);
          //uint32_t FSMC_NAND_ReadSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaToRead);
          uint32_t FSMC_NAND_EraseBlock(uint32_t Address);
          uint32_t FSMC_NAND_Reset(void);
          uint32_t FSMC_NAND_GetStatus(void);
          uint32_t FSMC_NAND_ReadStatus(void);
          //uint32_t FSMC_NAND_AddressIncrement(NAND_ADDRESS* Address);

          #endif /* __FSMC_NAND_H */
          七,NFTL代碼層
          有關NFTL代碼,自行處理。

          本文引用地址:http://www.ex-cimer.com/article/201611/323209.htm

          上一頁 1 2 下一頁

          評論


          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();