語音識別技術(shù)原理全面解析
語音識別是以語音為研究對象,通過語音信號處理和模式識別讓機(jī)器自動識別和理解人類口述的語言。語音識別技術(shù)就是讓機(jī)器通過識別和理解過程把語 音信號轉(zhuǎn)變?yōu)橄鄳?yīng)的文本或命令的高技術(shù)。語音識別是一門涉及面很廣的交叉學(xué)科,它與聲學(xué)、語音學(xué)、語言學(xué)、信息理論、模式識別理論以及神經(jīng)生物學(xué)等學(xué)科都 有非常密切的關(guān)系。語音識別技術(shù)正逐步成為計算機(jī)信息處理技術(shù)中的關(guān)鍵技術(shù),語音技術(shù)的應(yīng)用已經(jīng)成為一個具有競爭性的新興高技術(shù)產(chǎn)業(yè)。
本文引用地址:http://www.ex-cimer.com/article/201710/368421.htm1、語音識別的基本原理
語音識別系統(tǒng)本質(zhì)上是一種模式識別系統(tǒng),包括特征提取、模式匹配、參考模式庫等三個基本單元,它的基本結(jié)構(gòu)如下圖所示:
未知語音經(jīng)過話筒變換成電信號后加在識別系統(tǒng)的輸入端,首先經(jīng)過預(yù)處理,再根據(jù)人的語音特點(diǎn)建立語音模型,對輸入的語音信號進(jìn)行分析,并抽取所需的特 征,在此基礎(chǔ)上建立語音識別所需的模板。而計算機(jī)在識別過程中要根據(jù)語音識別的模型,將計算機(jī)中存放的語音模板與輸入的語音信號的特征進(jìn)行比較,根據(jù)一定 的搜索和匹配策略,找出一系列最優(yōu)的與輸入語音匹配的模板。然后根據(jù)此模板的定義,通過查表就可以給出計算機(jī)的識別結(jié)果。顯然,這種最優(yōu)的結(jié)果與特征的選 擇、語音模型的好壞、模板是否準(zhǔn)確都有直接的關(guān)系。
2、語音識別技術(shù)的發(fā)展歷史及現(xiàn)狀
1952年,ATTBell實(shí)驗(yàn)室的Davis等人研制了第一個可十個英文數(shù)字的特定人語音增強(qiáng)系統(tǒng)一Audry系統(tǒng)1956年,美國普林斯 頓大學(xué)RCA實(shí)驗(yàn)室的Olson和Belar等人研制出能10個單音節(jié)詞的系統(tǒng),該系統(tǒng)采用帶通濾波器組獲得的頻譜參數(shù)作為語音增強(qiáng)特征。1959 年,F(xiàn)ry和Denes等人嘗試構(gòu)建音素器來4個元音和9個輔音,并采用頻譜分析和模式匹配進(jìn)行決策。這就大大提高了語音識別的效率和準(zhǔn)確度。
從此計算機(jī) 語音識別的受到了各國科研人員的重視并開始進(jìn)入語音識別的研究。60年代,蘇聯(lián)的Matin等提出了語音結(jié)束點(diǎn)的端點(diǎn)檢測,使語音識別水平明顯上 升;Vintsyuk提出了動態(tài)編程,這一提法在以后的識別中不可或缺。
60年代末、70年代初的重要成果是提出了信號線性預(yù)測編碼(LPC)技術(shù)和動態(tài) 時間規(guī)整(DTW)技術(shù),有效地解決了語音信號的特征提取和不等長語音匹配問題;同時提出了矢量量化(VQ)和隱馬爾可夫模型(HMM)理論。語音識別技 術(shù)與語音合成技術(shù)結(jié)合使人們能夠擺脫鍵盤的束縛,取而代之的是以語音輸入這樣便于使用的、自然的、人性化的輸入方式,它正逐步成為信息技術(shù)中人機(jī)接口的關(guān) 鍵技術(shù)。
3、語音識別的方法
目前具有代表性的語音識別方法主要有動態(tài)時間規(guī)整技術(shù)(DTW)、隱馬爾可夫模型(HMM)、矢量量化(VQ)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、支持向量機(jī)(SVM)等方法。
動態(tài)時間規(guī)整算法(Dynamic Time Warping,DTW)是在非特定人語音識別中一種簡單有效的方法,該算法基于動態(tài)規(guī)劃的思想,解決了發(fā)音長短不一的模板匹配問題,是語音識別技術(shù)中出 現(xiàn)較早、較常用的一種算法。在應(yīng)用DTW算法進(jìn)行語音識別時,就是將已經(jīng)預(yù)處理和分幀過的語音測試信號和參考語音模板進(jìn)行比較以獲取他們之間的相似度,按 照某種距離測度得出兩模板間的相似程度并選擇最佳路徑。
隱馬爾可夫模型(HMM)是語音信號處理中的一種統(tǒng)計模型,是由Markov鏈 演變來的,所以它是基于參數(shù)模型的統(tǒng)計識別方法。由于其模式庫是通過反復(fù)訓(xùn)練形成的與訓(xùn)練輸出信號吻合概率最大的最佳模型參數(shù)而不是預(yù)先儲存好的模式樣 本,且其識別過程中運(yùn)用待識別語音序列與HMM參數(shù)之間的似然概率達(dá)到最大值所對應(yīng)的最佳狀態(tài)序列作為識別輸出,因此是較理想的語音識別模型。
矢量量化(Vector Quantization)是一種重要的信號壓縮方法。與HMM相比,矢量量化主要適用于小詞匯量、孤立詞的語音識別中。其過程是將若干個語音信號波形或 特征參數(shù)的標(biāo)量數(shù)據(jù)組成一個矢量在多維空間進(jìn)行整體量化。把矢量空間分成若干個小區(qū)域,每個小區(qū)域?qū)ふ乙粋€代表矢量,量化時落入小區(qū)域的矢量就用這個代表 矢量代替。矢量量化器的設(shè)計就是從大量信號樣本中訓(xùn)練出好的碼書,從實(shí)際效果出發(fā)尋找到好的失真測度定義公式,設(shè)計出最佳的矢量量化系統(tǒng),用最少的搜索和 計算失真的運(yùn)算量實(shí)現(xiàn)最大可能的平均信噪比。
在實(shí)際的應(yīng)用過程中,人們還研究了多種降低復(fù)雜度的方法,包括無記憶的矢量量化、有記憶的矢量量化和模糊矢量量化方法。
人工神經(jīng)網(wǎng)絡(luò)(ANN)是20世紀(jì)80年代末期提出的一種新的語音識別方法。其本質(zhì)上是一個自適應(yīng)非線性動力學(xué)系統(tǒng),模擬了人類神經(jīng)活動的原理,具有自 適應(yīng)性、并行性、魯棒性、容錯性和學(xué)習(xí)特性,其強(qiáng)大的分類能力和輸入—輸出映射能力在語音識別中都很有吸引力。其方法是模擬人腦思維機(jī)制的工程模型,它與 HMM正好相反,其分類決策能力和對不確定信息的描述能力得到舉世公認(rèn),但它對動態(tài)時間信號的描述能力尚不盡如人意,通常MLP分類器只能解決靜態(tài)模式分 類問題,并不涉及時間序列的處理。盡管學(xué)者們提出了許多含反饋的結(jié)構(gòu),但它們?nèi)圆蛔阋钥坍嬛T如語音信號這種時間序列的動態(tài)特性。由于ANN不能很好地描述 語音信號的時間動態(tài)特性,所以常把ANN與傳統(tǒng)識別方法結(jié)合,分別利用各自優(yōu)點(diǎn)來進(jìn)行語音識別而克服HMM和ANN各自的缺點(diǎn)。近年來結(jié)合神經(jīng)網(wǎng)絡(luò)和隱含 馬爾可夫模型的識別算法研究取得了顯著進(jìn)展,其識別率已經(jīng)接近隱含馬爾可夫模型的識別系統(tǒng),進(jìn)一步提高了語音識別的魯棒性和準(zhǔn)確率。
支持向量機(jī)(Support vector machine)是應(yīng)用統(tǒng)計學(xué)理論的一種新的學(xué)習(xí)機(jī)模型,采用結(jié)構(gòu)風(fēng)險最小化原理(Structural Risk Minimization,SRM),有效克服了傳統(tǒng)經(jīng)驗(yàn)風(fēng)險最小化方法的缺點(diǎn)。兼顧訓(xùn)練誤差和泛化能力,在解決小樣本、非線性及高維模式識別方面有許多 優(yōu)越的性能,已經(jīng)被廣泛地應(yīng)用到模式識別領(lǐng)域。
4、語音識別系統(tǒng)的分類
語音識別系統(tǒng)可以根據(jù)對輸入語音的限制加以分類。如果從說話者與識別系統(tǒng)的相關(guān)性考慮,可以將識別系統(tǒng)分為三類:(1)特定人語音識別系統(tǒng)。僅考慮對于專人的話音 進(jìn)行識別。(2)非特定人語音系統(tǒng)。識別的語音與人無關(guān),通常要用大量不同人的語音數(shù)據(jù)庫對識別系統(tǒng)進(jìn)行學(xué)習(xí)。(3)多人的識別系統(tǒng)。通常能識別一組人的 語音,或者成為特定組語音識別系統(tǒng),該系統(tǒng)僅要求對要識別的那組人的語音進(jìn)行訓(xùn)練。
如果從說話的方式考慮,也可以將識別系統(tǒng)分為三類:(1)孤立詞語音識別系統(tǒng)。孤立詞識別系統(tǒng)要求輸入每個詞后要停頓。(2)連接詞語音識別系統(tǒng)。連接詞輸入系統(tǒng)要求對每個詞都清楚發(fā)音,一些連音現(xiàn)象開始 出現(xiàn)。(3)連續(xù)語音識別系統(tǒng)。連續(xù)語音輸入是自然流利的連續(xù)語音輸入,大量連音和變音會出現(xiàn)。
如果從識別系統(tǒng)的詞匯量大小考慮,也可 以將識別系統(tǒng)分為三類:(1)小詞匯量語音識別系統(tǒng)。通常包括幾十個詞的語音識別系統(tǒng)。(2)中等詞匯量的語音識別系統(tǒng)。通常包括幾百個詞到上千個詞的識 別系統(tǒng)。(3)大詞匯量語音識別系統(tǒng)。通常包括幾千到幾萬個詞的語音識別系統(tǒng)。隨著計算機(jī)與數(shù)字信號處理器運(yùn)算能力以及識別系統(tǒng)精度的提高,識別系統(tǒng)根據(jù) 詞匯量大小進(jìn)行分類也不斷進(jìn)行變化。目前是中等詞匯量的識別系統(tǒng),將來可能就是小詞匯量的語音識別系統(tǒng)。這些不同的限制也確定了語音識別系統(tǒng)的困難度。
5、語音識別的應(yīng)用
語音識別可以應(yīng)用的領(lǐng)域大致分為大五類:
辦公室或商務(wù)系統(tǒng)。典型的應(yīng)用包括:填寫數(shù)據(jù)表格、數(shù)據(jù)庫管理和控制、鍵盤功能增強(qiáng)等等。
制造業(yè):在質(zhì)量控制中,語音識別系統(tǒng)可以為制造過程提供一種“不用手”、“不用眼”的檢控(部件檢查)。
電信:相當(dāng)廣泛的一類應(yīng)用在撥號電話系統(tǒng)上都是可行的,包括話務(wù)員協(xié)助服務(wù)的自動化、國際國內(nèi)遠(yuǎn)程電子商務(wù)、語音呼叫分配、語音撥號、分類訂貨。
醫(yī)療:這方面的主要應(yīng)用是由聲音來生成和編輯專業(yè)的醫(yī)療報告。
其他:包括由語音控制和操作的游戲和玩具、幫助殘疾人的語音識別系統(tǒng)、車輛行駛中一些非關(guān)鍵功能的語音控制,如車載交通路況控制系統(tǒng)、音響系統(tǒng)。
未來隨著手持設(shè)備的小型化,甚至穿戴化,各種智能眼鏡,手表等層出不窮,當(dāng)然找準(zhǔn)市場突破口很重要,好的解決方案和系統(tǒng)設(shè)計參考也是必不可少的。
評論