<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 智能計算 > 設計應用 > 人工智能之TD Learning算法

          人工智能之TD Learning算法

          作者:時間:2018-06-19來源:網絡收藏

            機器學習有關算法內容,請參見公眾號“科技優化生活”之前相關文章。之機器學習主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點探討一下算法。 ^_^

          本文引用地址:http://www.ex-cimer.com/article/201806/381804.htm

            時序差分學習結合了動態規劃DP和蒙特卡洛MC(請參見(31))方法,且兼具兩種算法的優點,是強化學習的核心思想。

            雖然蒙特卡羅MC方法僅在最終結果已知時才調整其估計值,但時序差分學習調整預測以匹配后,更準確地預測最終結果之前的未來預測。


            TD Learning算法概念:

            TD Learning(Temporal-Difference Learning) 時序差分學習指的是一類無模型的強化學習方法,它是從當前價值函數估計的自舉過程中學習的。這些方法從環境中取樣,如蒙特卡洛方法,并基于當前估計執行更新,如動態規劃方法。

            TD Learning算法本質:

            TD Learning(Temporal-DifferenceLearning)時序差分學習結合了動態規劃和蒙特卡洛方法,是強化學習的核心思想。

            時序差分不好理解。改為當時差分學習比較形象一些,表示通過當前的差分數據來學習。

            蒙特卡洛MC方法是模擬(或者經歷)一段序列或情節,在序列或情節結束后,根據序列或情節上各個狀態的價值,來估計狀態價值。TD Learning時序差分學習是模擬(或者經歷)一段序列或情節,每行動一步(或者幾步),根據新狀態的價值,然后估計執行前的狀態價值??梢哉J為蒙特卡洛MC方法是最大步數的TD Learning時序差分學習。

            TD Learning算法描述:

            如果可以計算出策略價值(π狀態價值vπ(s),或者行動價值qπ(s,a)),就可以優化策略。

            在蒙特卡洛方法中,計算策略的價值,需要完成一個情節,通過情節的目標價值Gt來計算狀態的價值。其公式:

            MC公式:

            V(St)←V(St)+αδt

            δt=[Gt?V(St)]

            這里:

            δt – MC誤差

            α – MC學習步長

            TD Learning公式:

            V(St)←V(St)+αδt

            δt=[Rt+1+γV(St+1)?V(St)]

            這里:

            δt – TD Learning誤差

            α – TD Learning步長

            γ – TD Learning報酬貼現率

            TD Learning時間差分方法的目標為Rt+1+γ V(St+1),若V(St+1) 采用真實值,則TD Learning時間差分方法估計也是無偏估計,然而在試驗中V(St+1) 用的也是估計值,因此TD Learning時間差分方法屬于有偏估計。然而,跟蒙特卡羅MC方法相比,TD Learning時間差分方法只用到了一步隨機狀態和動作,因此TD Learning時間差分方法目標的隨機性比蒙特卡羅MC方法中的Gt 要小,因此其方差也比蒙特卡羅MC方法的方差小。



            TD Learning分類:

            1)策略狀態價值vπ的時序差分學習方法(單步多步)

            2)策略行動價值qπ的on-policy時序差分學習方法: Sarsa(單步多步)

            3)策略行動價值qπ的off-policy時序差分學習方法: Q-learning(單步),Double Q-learning(單步)

            4)策略行動價值qπ的off-policy時序差分學習方法(帶importance sampling): Sarsa(多步)

            5)策略行動價值qπ的off-policy時序差分學習方法(不帶importance sampling): Tree Backup Algorithm(多步)

            6)策略行動價值qπ的off-policy時序差分學習方法: Q(σ)(多步)

            TD Learning算法流程:

            1)單步TD Learning時序差分學習方法:

            InitializeV(s) arbitrarily ?s∈S+

            Repeat(for each episode):

            ?Initialize S

            ?Repeat (for each step of episode):

            ?? A←actiongiven by π for S

            ??Take action A, observe R,S′

            ??V(S)←V(S)+α[R+γV(S′)?V(S)]

            ?? S←S′

            ?Until S is terminal



            2)多步TD Learning時序差分學習方法:

            Input:the policy π to be evaluated

            InitializeV(s) arbitrarily ?s∈S

            Parameters:step size α∈(0,1], a positive integer n

            Allstore and access operations (for St and Rt) can take their index mod n

            Repeat(for each episode):

            ?Initialize and store S0≠terminal

            ? T←∞

            ? Fort=0,1,2,?:

            ?? Ift<tt<t, p="" then:

            ???Take an action according to π( ˙|St)

            ???Observe and store the next reward as Rt+1 and the next state as St+1

            ???If St+1 is terminal, then T←t+1

            ?? τ←t?n+1(τ is the time whose state's estimate is being updated)

            ?? Ifτ≥0τ≥0:

            ??? G←∑min(τ+n,T)i=τ+1γi?τ?1Ri

            ???if τ+n≤Tτ+n≤T then: G←G+γnV(Sτ+n)(G(n)τ)

            ???V(Sτ)←V(Sτ)+α[G?V(Sτ)]

            ?Until τ=T?1



            注意:V(S0)是由V(S0),V(S1),…,V(Sn)計算所得;V(S1)是由V(S1),V(S1),…,V(Sn+1)計算所得。

            TD Learning理論基礎:

            TD Learning理論基礎如下:

            1)蒙特卡羅方法

            2)動態規劃

            3)信號系統

            TD Learning算法優點:

            1)不需要環境的模型;

            2)可以采用在線的、完全增量式的實現方式;

            3)不需等到最終的真實結果;

            4)不局限于episode task;

            5)可以用于連續任務;

            6)可以保證收斂到 vπ,收斂速度較快。

            TD Learning算法缺點:

            1) 對初始值比較敏感;

            2) 并非總是用函數逼近。

            TD Learning算法應用:

            從應用角度看,TD Learning應用領域與應用前景都是非常廣闊的,目前主要應用于動態系統、機器人控制及其他需要進行系統控制的領域。

            結語:

            TD Learning是結合了動態規劃DP和蒙特卡洛MC方法,并兼具兩種算法的優點,是強化學習的中心。TD Learning不需要環境的動態模型,直接從經驗經歷中學習;也不需要等到最終的結果才更新模型,它可以基于其他估計值來更新估計值。輸入數據可以刺激模型并且使模型做出反應。反饋不僅從監督學習的學習過程中得到,還從環境中的獎勵或懲罰中得到。TD Learning算法已經被廣泛應用于動態系統、機器人控制及其他需要進行系統控制的領域。



          關鍵詞: 人工智能 TD Learning

          評論


          相關推薦

          技術專區

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();