<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 4 種有源濾波器設(shè)計(jì)工具詳細(xì)評(píng)估

          4 種有源濾波器設(shè)計(jì)工具詳細(xì)評(píng)估

          作者: 時(shí)間:2018-07-25 來源:網(wǎng)絡(luò) 收藏

            本文對(duì)4 種設(shè)計(jì)工具的標(biāo)稱擬合精度和一些動(dòng)態(tài)范圍進(jìn)行了詳細(xì)的評(píng)估。這4種工具都使用標(biāo)稱擬合誤差小于0.6%的理想運(yùn)算放大器,采用E96步長(zhǎng)電阻值,在標(biāo)稱擬合精度方面非常出色。

          本文引用地址:http://www.ex-cimer.com/article/201807/389496.htm

            使用供應(yīng)商提供的多反饋(MFB)低通工具到底有什么好處?讓我們深入探討來獲得答案。

            在此在線設(shè)計(jì)工具精確度的探索中,市場(chǎng)上4種供應(yīng)商工具針對(duì)相對(duì)簡(jiǎn)單的二階低通濾波器給出的RC值,是以MFB拓?fù)鋵?shí)現(xiàn)的。本文將使用這些值進(jìn)行仿真,以對(duì)所得濾波器形狀與理想目標(biāo)進(jìn)行比較,得出每個(gè)方案的擬合誤差。標(biāo)稱擬合誤差是由RC的標(biāo)準(zhǔn)值約束和有限放大器的增益帶寬積(GBW或GBP)所引起。使用相同運(yùn)放模型得到的每個(gè)RC方案的輸出點(diǎn)和積分噪聲結(jié)果,由于電阻大小和噪聲增益峰值差異而略有不同。

            MFB濾波器內(nèi)的噪聲增益形狀由期望的濾波器形狀和噪聲增益零點(diǎn)所產(chǎn)生。由于特定RC方案給出的噪聲增益零點(diǎn)不同,不同方案的峰值噪聲增益差異很大。設(shè)計(jì)示例將對(duì)這些差異進(jìn)行說明,同時(shí)還會(huì)顯示對(duì)于不同工具得出的RC方案,其最小帶內(nèi)環(huán)路增益(LG)的差異。

            標(biāo)稱增益響應(yīng)與理想響應(yīng)的擬合誤差

            有許多方法可以評(píng)估擬合誤差。所有這些工具在大部分頻率范圍內(nèi)得到的響應(yīng)形狀非常相近,其中大部分偏差發(fā)生在響應(yīng)的峰值附近。一種簡(jiǎn)單的擬合衡量標(biāo)準(zhǔn)是,將每個(gè)實(shí)現(xiàn)電路得出的f0和Q與其理想目標(biāo)進(jìn)行比較,得出它們的百分比誤差。然后求這兩個(gè)誤差的均方根值(RMS),得到一個(gè)組合誤差指標(biāo)。

            無論設(shè)計(jì)選用何種運(yùn)放,ADI工具都允許下載仿真數(shù)據(jù)——這里是LTC6240。為繼續(xù)比較不同方案的噪聲和環(huán)路增益,將RC方案移植到TINA,同時(shí)使用LMP7711作為每個(gè)方案的噪聲仿真的公共運(yùn)放。由于ADI工具也用于一種稍微不同的濾波器形狀(1.04dB峰值vs其它工具中的1.0dB),因此,為了比較,首先將其響應(yīng)擬合結(jié)果隔離出來。

            ADI目標(biāo)響應(yīng)形狀:

            設(shè)計(jì)工具比較

            使用圖1中的電路(以及顯示的RC編號(hào)),這兩種ADI解決方案將在ADI工具中使用LTC6240和在TINA中使用LMP7711進(jìn)行仿真(圖1是使用LMP7711的TINA設(shè)置)。實(shí)現(xiàn)有效擬合比較的關(guān)鍵要求是運(yùn)放的真正單極點(diǎn)開環(huán)增益帶寬積。使用TINA模型測(cè)試LMP7711 Aol(開環(huán)增益)響應(yīng)顯示出26MHz GBW的結(jié)果,而其報(bào)告值為17MHz GBW。在仿真之前,該模型被修改為17MHz(在宏中將C2從20pF增加到33.3pF),使獲得的結(jié)果可與ADI工具所得LTC6240仿真數(shù)據(jù)相比較。為便于Aol測(cè)試,LTC6240并未出現(xiàn)在TINA庫中,但我們假定其符合數(shù)據(jù)手冊(cè)中的GBW = 18MHz。


            圖1:在TINA中給出ADI未調(diào)整GBW的RC值并使用LMP7711的有源濾波器仿真

            與目標(biāo)不匹配的第一級(jí)是標(biāo)準(zhǔn)電阻值選擇。有5個(gè)RC值可以選擇,但只有3個(gè)設(shè)計(jì)目標(biāo),通常先選出E24(5%步長(zhǎng))電容值,然后對(duì)3個(gè)設(shè)計(jì)目標(biāo)得到E96(1%步長(zhǎng))精確電阻的最終結(jié)果。這些值可以放入理想(無限GBW)的公式中,以便先評(píng)估此步驟預(yù)期有多少誤差。先選擇標(biāo)準(zhǔn)電容值,3個(gè)電阻精確方案的標(biāo)準(zhǔn)值會(huì)高于和低于精確結(jié)果。雖然在當(dāng)前這些工具中不太可能實(shí)現(xiàn),但未來可對(duì)高于或低于精確值的8個(gè)標(biāo)準(zhǔn)值排列進(jìn)行擬合接近度測(cè)試,然后從準(zhǔn)確值“轉(zhuǎn)到”錯(cuò)誤最少的標(biāo)準(zhǔn)值。更常見的情況是,3個(gè)精確值電阻分別選用與其最接近的標(biāo)準(zhǔn)值。根據(jù)精確值最初與標(biāo)準(zhǔn)E96電阻值接近的程度,擬合誤差有一定的隨機(jī)性。

            接下來可以將這些值應(yīng)用于有限GBW運(yùn)放模型,并在應(yīng)用RC容差之前進(jìn)行仿真,以得出最終標(biāo)稱擬合誤差。表1總結(jié)了從使用LTC6240模型的ADI工具下載的數(shù)據(jù)以及從使用改進(jìn)的GBW LMP7711模型的TINA下載的數(shù)據(jù)。請(qǐng)注意,使用這些標(biāo)稱標(biāo)準(zhǔn)RC值,沒有哪個(gè)有限GBW運(yùn)放仿真能達(dá)到1%以內(nèi)的期望的100kHzf-3dB頻率。


            表1 :ADI目標(biāo)和方案的擬合誤差結(jié)果一覽

            理想的運(yùn)放值假定有無限的GBW,其誤差僅由所選標(biāo)準(zhǔn)電阻值引起。經(jīng)GBW調(diào)整的RC值不能應(yīng)用于理想公式,因?yàn)槠淠繕?biāo)似乎不對(duì)。使用實(shí)際運(yùn)放模型顯示標(biāo)稱結(jié)果,沒有為GBW調(diào)整RC值,得到3.4%至4.2%的較大均方根誤差。這是因?yàn)楸驹O(shè)計(jì)選擇了一款超低GBW器件。ADI GBW調(diào)整后的RC值大大改善了這種情況,使fo和Q的標(biāo)稱均方根誤差僅為1.2%至1.8%。正如預(yù)期的那樣,它們比選用E96標(biāo)準(zhǔn)電阻值的0.41%誤差略有升高。圖2對(duì)這些仿真結(jié)果與理想值進(jìn)行了比較,在峰值附近做了放大。

            這些標(biāo)稱響應(yīng)形狀與目標(biāo)接近但不完全一致。RC器件容差的影響使已經(jīng)偏移標(biāo)稱結(jié)果的預(yù)期響應(yīng)形狀進(jìn)一步擴(kuò)大?;疑獿MP7711的RC值是經(jīng)過GBW調(diào)整的,在圖中看起來擬合最差,與Q的擬合也最差,但是它的RMS擬合誤差最小,并且與fo和所得的f-3dB擬合最好。顯然,如果標(biāo)稱響應(yīng)已經(jīng)相對(duì)于目標(biāo)偏移了,那么在包含RC容差時(shí),改善這種擬合以提供更多以目標(biāo)為中心的擴(kuò)展還有很長(zhǎng)的路要走(注意:ADI工具還提供了響應(yīng)擴(kuò)展包絡(luò)數(shù)據(jù)下載——但這超出了本文討論的范圍)。


            圖2:54.34kHz下1.04dB目標(biāo)峰值周圍響應(yīng)匹配的放大特寫

            繼續(xù)使用TI和Intersil工具的RC結(jié)果,這里列出了略微不同的目標(biāo):

            有源濾波器設(shè)計(jì)工具比較

            這些工具似乎都只為“理想”運(yùn)放提供RC方案。為了測(cè)試使用相對(duì)較慢(17MHz、LMP7711)的器件有何影響,這里只使用Webench和Intersil的RC值,用150MHz GBW的OPA300模型仿真的結(jié)果也會(huì)顯示。


            表2:TI和Intersil方案的設(shè)計(jì)和目標(biāo)擬合誤差總結(jié)

            對(duì)于理想運(yùn)放公式,相對(duì)標(biāo)準(zhǔn)阻值的初始誤差似乎在0.38%至0.59%的范圍內(nèi)。假設(shè)有一個(gè)理想的運(yùn)放,從Filterpro下載第一列和第二列響應(yīng)數(shù)據(jù)顯示出相似的初始誤差。使用17MHz GBW(LMP7711)模型進(jìn)行仿真時(shí),誤差從3.21%增加到5.1%。使用更為“理想”的器件(如150MHz GBW的OPA300)重新運(yùn)行,誤差降低到1%RMS以下。圖3顯示了表2的設(shè)計(jì)在增益峰值附近的響應(yīng)形狀。


            圖3:54.08kHz下1.0dB目標(biāo)峰值附近的響應(yīng)匹配放大特寫

            這里最佳擬合來自Intersil的RC值(假設(shè)是一款理想運(yùn)放)和快得多的OPA300。看來在ADI工具推薦的GBW的低端使用器件會(huì)導(dǎo)致相對(duì)較大的標(biāo)稱擬合誤差。在需要采用較低GBW(和功率)器件的地方,謹(jǐn)慎的做法是采用一個(gè)調(diào)整過GBW的RC程序。顯然,使用像OPA300這樣快得多的器件可以提高擬合精度——但在這些示例中,其代價(jià)是,OPA300的電流高達(dá)12mA,而LMP7711僅為1.15mA。

            不同方案的輸出點(diǎn)噪聲和SNR

            假設(shè)LMP7711、LTC6240和ISL28110運(yùn)放固有的輸入電壓噪聲約為6nV至7nV,對(duì)該濾波器的RC方案進(jìn)行調(diào)整。為簡(jiǎn)單起見,噪聲比較都將在TINA中使用LMP7711模型來完成。檢查該模型,平帶中的輸入噪聲為4.9nV/√Hz,而不是數(shù)據(jù)手冊(cè)中給出的超過1/f轉(zhuǎn)角的更高頻率下的5.9nV。為了將這些仿真明顯的輸入電壓噪聲提高到RC方案中假定的約6.0nV,只需在執(zhí)行MFB噪聲比較仿真之前,在非反相輸入端添加一個(gè)602Ω的電阻接地,然后利用運(yùn)放模型噪聲進(jìn)行均方根處理。由于這是一款CMOS輸入放大器,因此可以放心地忽略輸入電流噪聲的影響。圖4顯示了使用ADI工具生成的、經(jīng)過GBW調(diào)整的RC值的電路和輸出點(diǎn)噪聲。仿真中一個(gè)新元件是在非反相輸入端增加的一個(gè)接地的602Ω電阻,用來在與從簡(jiǎn)單的100V/V測(cè)試仿真增益得到的固有4.9nV/√Hz相結(jié)合時(shí),生成運(yùn)放模型數(shù)據(jù)手冊(cè)中指定的5.9nV/√Hz數(shù)據(jù)。


            圖4:使用LMP7711模型、經(jīng)過ADI工具調(diào)節(jié)的RC方案的輸出點(diǎn)噪聲示例

            圖4的點(diǎn)噪聲曲線顯示了1kHz起始點(diǎn)處的1/f拐角,然后在中頻區(qū)域趨于平坦,并在諧振頻率附近達(dá)到峰值。由于這種拓?fù)浣Y(jié)構(gòu)固有的噪聲增益峰值(NG),大多數(shù)有源濾波器設(shè)計(jì)都會(huì)顯示出這種噪聲尖峰。4個(gè)設(shè)計(jì)示例將采用這種仿真得出平帶和峰值噪聲。


          上一頁 1 2 下一頁

          關(guān)鍵詞: 有源濾波器

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();