AI芯時代 技術(shù)之爭永無止境
1492年哥倫布從西班牙巴羅斯港出發(fā),一路西行發(fā)現(xiàn)了美洲。葡萄牙人達伽馬南下非洲,繞過好望角到達了印度。不久之后,麥哲倫用了整整三年時間,完成了人類史上第一次環(huán)球航行,開啟了人類歷史上的大航海時代。大航海時代的到來,拉近了人類社會各文明之間的距離,對人類社會產(chǎn)生了深遠的影響。
本文引用地址:http://www.ex-cimer.com/article/201809/392345.htm從深藍到Alpha Go,人工智能逐漸走進人們的生活。人工智能也從一場技術(shù)革命,逐漸走向了產(chǎn)業(yè)落地。智能手機、智能家居設(shè)備、智能音箱……等設(shè)備,已經(jīng)完全進入到人們的生活中。指紋識別、人臉識別、畫面增強等實用人工智能的技術(shù),也成為了人們?nèi)粘J褂秒娮釉O(shè)備必不可少的技術(shù)。
這些在我們?nèi)粘I钪小耙姽植还帧钡娜斯ぶ悄芗夹g(shù)越來越普遍,代表了人工智能產(chǎn)業(yè)在近年來的爆炸式發(fā)展,2018年更是被稱為人工智能技術(shù)規(guī)模應(yīng)用的拐點。而作為人工智能技術(shù)的核心,人工智能芯片也備受關(guān)注,引得國內(nèi)外科技巨頭紛紛布局。谷歌、蘋果、微軟、Facebook、英特爾、高通、英偉達、AMD、阿里巴巴等巨頭紛紛開始自主研發(fā)人工智能芯片。
并且人工智能芯片的應(yīng)用場景細分市場越來越多,專門為某些人工智能應(yīng)用場景定制的芯片適用性明顯高于通用芯片。這樣的形勢,給一些人工智能芯片的初創(chuàng)公司帶來了機會。寒武紀(jì)芯片和地平線的人工智能視覺芯片、自動駕駛芯片等,就是初創(chuàng)公司在人工智能芯片領(lǐng)域取得成功的代表。
人工智能芯片大火的同時,已經(jīng)呈現(xiàn)出三分天下的態(tài)勢。FPGA、GPU和TPU芯片,已經(jīng)在人工智能領(lǐng)域大規(guī)模應(yīng)用。FPGA并不是新鮮的事物,而因為AI的火熱的應(yīng)用需求不斷增強,F(xiàn)PGA正是作為一種AI芯片呈現(xiàn)在人們的面前。準(zhǔn)確的說,不僅僅是芯片,因為它能夠通過軟件的方式定義,所以,更像是AI芯片領(lǐng)域的變形金剛。
而目前大多數(shù)人工智能企業(yè)青睞于GPU芯片,而TPU相對于GPU而言,采用8位低精度計算節(jié)省晶體管,對精度影響很小但是卻可以大幅節(jié)約功耗。尤其是當(dāng)大面積集成系統(tǒng)時,TPU不僅性能更強,功耗也會大幅低于GPU集成系統(tǒng)。由于芯片能力非常強大,谷歌使用了液冷散熱技術(shù),可以幫助TPU更好的為數(shù)據(jù)中心服務(wù)。
TPU全名為Tensor Processing Unit,是谷歌研發(fā)的一種神經(jīng)網(wǎng)絡(luò)訓(xùn)練的處理器,主要用于深度學(xué)習(xí)、AI運算。谷歌在I/O大會上推出了自己的AI芯片——張量處理器TPU(第一代)。谷歌表示,盡管在一些應(yīng)用上利用率很低,初代TPU平均比那時候的GPU或CPU快15~30倍,性能功耗比(TOPS/Watt)高出約30~80倍。
在第二代TPU里,每個TPU都包含了一個定制的高速網(wǎng)絡(luò),構(gòu)成了一個谷歌稱之為“TPU艙室”(TPU POD)的機器學(xué)習(xí)超級計算機。一個TPU艙室包含64個第二代TPU,最高可提供多達11.5千萬億次浮點運算,內(nèi)存400萬兆字節(jié),4倍快于當(dāng)時市面上最好的32臺GPU。
Cloud TPU帶來的最大好處,則是谷歌的開源機器學(xué)習(xí)框架TensorFlow。TensorFlow現(xiàn)在已經(jīng)是Github最受歡迎的深度學(xué)習(xí)開源項目,Cloud TPU出現(xiàn)以后,開發(fā)人員和研究者使用高級API編程這些TPU,這樣就可以更輕松地在CPU、GPU或Cloud TPU上訓(xùn)練機器學(xué)習(xí)模型,而且只需很少的代碼更改。
如果拿汽車類比,GPU是大巴車,適合多人同目標(biāo);FPGA是小轎車,能到任何地方,但得自己會開;而TPU是火車,只能在比公路少的多的鐵軌上開,但開的飛快。人工智能還在快速發(fā)展,還處于在各個行業(yè)落地的過程中。這個階段對GPU,F(xiàn)PGA和TPU都有需求。
毫無疑問,人工智能是當(dāng)今時代的主旋律。在人工智能軟件占據(jù)人們視線的同時,人工智能技術(shù)尤其是深度學(xué)習(xí),讓各大公司都注意到必須要填補的計算力鴻溝。但其影響在更廣泛的行業(yè)內(nèi)滲透只是時間上的問題。
評論