<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 如何在擁擠的電路板上實(shí)現(xiàn)低 EMI 的高效電源設(shè)計(jì)?

          如何在擁擠的電路板上實(shí)現(xiàn)低 EMI 的高效電源設(shè)計(jì)?

          作者:ADI公司 Bhakti Waghmare和Diarmuid Carey 時(shí)間:2020-03-27 來(lái)源:電子產(chǎn)品世界 收藏

          有限且不斷縮小的空間、緊張的設(shè)計(jì)周期以及嚴(yán)格的電磁干擾()規(guī)范(例如CISPR 32和CISPR 25)這些限制因素,都導(dǎo)致獲得具有高效率和良好熱性能電源的難度很大。在整個(gè)設(shè)計(jì)周期中,電源設(shè)計(jì)通?;咎幱谠O(shè)計(jì)過(guò)程的最后階段,設(shè)計(jì)人員需要努力將復(fù)雜的電源擠進(jìn)更緊湊的空間,這使問(wèn)題變得更加復(fù)雜,非常令人沮喪。為了按時(shí)完成設(shè)計(jì),只能在性能方面做些讓步,把問(wèn)題丟給測(cè)試和驗(yàn)證環(huán)節(jié)去處理。簡(jiǎn)單、高性能和解決方案尺寸三個(gè)考慮因素通常相互沖突:只能優(yōu)先考慮一兩個(gè),而放棄第三個(gè),尤其當(dāng)設(shè)計(jì)期限臨近時(shí)。犧牲一些性能變得司空見(jiàn)慣;其實(shí)不應(yīng)該是這樣的。

          本文引用地址:http://www.ex-cimer.com/article/202003/411428.htm

          本文首先概述了在復(fù)雜的電子系統(tǒng)中電源帶來(lái)的嚴(yán)重問(wèn)題:即 ,通常簡(jiǎn)稱為噪聲。電源會(huì)產(chǎn)生,必須加以解決,那么問(wèn)題的根源是什么?通常有何緩解措施?本文介紹減少 EMI 的策略,提出了一種解決方案,能夠減少EMI、保持效率,并將電源放入有限的解決方案空間中。

          什么是EMI?

          電磁干擾是會(huì)干擾系統(tǒng)性能的電磁信號(hào)。這種干擾通過(guò)電磁感應(yīng)、靜電耦合或傳導(dǎo)來(lái)影響電路。它對(duì)汽車、醫(yī)療以及測(cè)試與測(cè)量設(shè)備制造商來(lái)說(shuō),是一項(xiàng)關(guān)鍵設(shè)計(jì)挑戰(zhàn)。上面提到的許多限制和不斷提高的電源性能要求(功率密度增加、開(kāi)關(guān)頻率更高以及電流更大)只會(huì)擴(kuò)大EMI的影響,因此亟需解決方案來(lái)減少 EMI。許多行業(yè)都要求必須滿足EMI標(biāo)準(zhǔn),如果在設(shè)計(jì)初期不加以考慮,則會(huì)嚴(yán)重影響產(chǎn)品的上市時(shí)間。

          EMI耦合類型

          EMI是電子系統(tǒng)中的干擾源與接收器(即電子系統(tǒng)中的一些元件)耦合時(shí)所產(chǎn)生的問(wèn)題。 EMI 按其耦合介質(zhì)可歸類為:傳導(dǎo)或輻射。

          傳導(dǎo) EMI(低頻,450 kHz至30 MHz) 
          傳導(dǎo)EMI通過(guò)寄生阻抗以及電源和接地連接以傳導(dǎo)方式耦合到元件。噪聲通過(guò)傳導(dǎo)傳輸?shù)搅硪粋€(gè)器件或電路。傳導(dǎo)EMI可以進(jìn)一步分為共模噪聲和差模噪聲。

          共模噪聲通過(guò)寄生電容和高dV/dt (C × dV/dt)進(jìn)行傳導(dǎo)。它通過(guò)寄生電容沿著任意信號(hào)(正或負(fù))到GND的路徑傳輸,如圖1所示。

          Differential-mode noise is conducted via parasitic inductance (magnetic coupling) and a high di/dt (L × di/dt).

          差模噪聲通過(guò)寄生電感(磁耦合)和高di/dt (L × di/dt)進(jìn)行傳導(dǎo)。

          266086-Fig-01.jpg

          圖1.差模和共模噪聲。

          輻射 EMI(高頻,30 MHz 至1 GHz)

          輻射EMI是通過(guò)磁場(chǎng)能量以無(wú)線方式傳輸?shù)酱郎y(cè)器件的噪聲。在開(kāi)關(guān)電源中,該噪聲是高di/dt與寄生電感耦合的結(jié)果。輻射噪聲會(huì)影響鄰近的器件。

          EMI 控制技術(shù)

          解決電源中EMI相關(guān)問(wèn)題的典型方法是什么?首先,確定 EMI 就是一個(gè)問(wèn)題。這看似很顯而易見(jiàn),但是確定其具體情況可能非常耗時(shí),因?yàn)樗枰褂肊MI測(cè)試室(并非隨處都有),以便對(duì)電源產(chǎn)生的電磁能量進(jìn)行量化,并確定該電磁能量是否符合系統(tǒng)的EMI標(biāo)準(zhǔn)要求。

          假設(shè)經(jīng)過(guò)測(cè)試,電源會(huì)帶來(lái)EMI問(wèn)題,那么設(shè)計(jì)人員將面臨通過(guò)多種傳統(tǒng)的校正策略來(lái)減少 EMI 的過(guò)程,其中包括:

          ●   在盡可能小的空間中實(shí)現(xiàn)高效率。

          ●   良好的熱性能。

          ●   布局優(yōu)化:精心的電源布局與選擇合適的電源組件同樣重要。成功的布局很大程度上取決于電源設(shè)計(jì)人員的經(jīng)驗(yàn)水平。布局優(yōu)化本質(zhì)上是個(gè)迭代過(guò)程,經(jīng)驗(yàn)豐富的電源設(shè)計(jì)人員有助于最大限度地減少迭代次數(shù),從而避免耽誤時(shí)間和產(chǎn)生額外的設(shè)計(jì)成本。問(wèn)題是:內(nèi)部人員往往不具備這些經(jīng)驗(yàn)。

          ●   緩沖器:一些設(shè)計(jì)人員會(huì)提前規(guī)劃并為簡(jiǎn)單的緩沖器電路(從開(kāi)關(guān)節(jié)點(diǎn)到GND的簡(jiǎn)單RC濾波器)提供占位面積。這樣可以抑制開(kāi)關(guān)節(jié)點(diǎn)的振鈴現(xiàn)象(一項(xiàng)產(chǎn)生EMI的因素),但是這種技術(shù)會(huì)導(dǎo)致?lián)p耗增加,從而對(duì)效率產(chǎn)生負(fù)面影響。

          ●   降低邊沿速率:減少開(kāi)關(guān)節(jié)點(diǎn)的振鈴也可以通過(guò)降低柵極導(dǎo)通的壓擺率來(lái)實(shí)現(xiàn)。不幸的是,與緩沖器類似,這會(huì)對(duì)整個(gè)系統(tǒng)的效率產(chǎn)生負(fù)面影響。

          ●   展頻(SSFM):許多ADI公司的Power by Linear?開(kāi)關(guān)穩(wěn)壓器都提供該特性,它有助于產(chǎn)品設(shè)計(jì)通過(guò)嚴(yán)格的EMI測(cè)試標(biāo)準(zhǔn)。采用SSFM技術(shù),在已知范圍內(nèi)(例如,編程頻率fSW±10%的變化范圍)對(duì)驅(qū)動(dòng)開(kāi)關(guān)頻率的時(shí)鐘進(jìn)行調(diào)制。這有助于將峰值噪聲能量分配到更寬的頻率范圍內(nèi)。

          ●   濾波器和屏蔽:濾波器和屏蔽總是會(huì)占用大量的成本和空間。它們也使生產(chǎn)復(fù)雜化。

          ●   以上所有制約措施都可以減少噪聲,但是它們也都存在缺陷。最大限度地減少電源設(shè)計(jì)中的噪聲通常能夠徹底解決問(wèn)題,但卻很難實(shí)現(xiàn)。ADI 公司的 Silent Switcher? 和 Silent Switcher 2 穩(wěn)壓器在穩(wěn)壓器端實(shí)現(xiàn)了低噪聲,從而無(wú)需額外的濾波、屏蔽或大量布局迭代。由于不必采用昂貴的反制措施,加快了產(chǎn)品上市時(shí)間并節(jié)省大量的成本。

          最大限度地減小電流回路

          為了減少 EMI,必須確定電源電路中的熱回路(高di/dt回路)并減少其影響。熱回路如圖2所示。在標(biāo)準(zhǔn)降壓轉(zhuǎn)換器的一個(gè)周期內(nèi),當(dāng) M1 關(guān)閉而 M2 打開(kāi)時(shí),交流電流沿著藍(lán)色回路流動(dòng)。在M1打開(kāi)而M2關(guān)閉的關(guān)閉周期中,電流沿著綠色回路流動(dòng)。產(chǎn)生最高EMI的回路并非完全直觀可見(jiàn),它既不是藍(lán)色回路也不是綠色回路,而是傳導(dǎo)全開(kāi)關(guān)交流電流(從零切換到IPEAK,然后再切換回零)的紫色回路。該回路稱為熱回路,因?yàn)樗慕涣骱虴MI能量最大。

          導(dǎo)致電磁噪聲和開(kāi)關(guān)振鈴的是開(kāi)關(guān)穩(wěn)壓器熱回路中的高di/dt和寄生電感。要減少EMI并改進(jìn)功能,需要盡量減少紫色回路的輻射效應(yīng)。熱回路的電磁輻射騷擾隨其面積的增加而增加,因此,如果可能的話,將熱回路的PC面積減小到零,并使用零阻抗理想電容可以解決該問(wèn)題。

          266086-Fig-02.jpg

          圖2.降壓轉(zhuǎn)換器的熱回路。

          使用Silent Switcher穩(wěn)壓器實(shí)現(xiàn)低噪聲

          磁場(chǎng)抵消

          雖然不可能完全消除熱回路區(qū)域,但是我們可以將熱回路分成極性相反的兩個(gè)回路。這可以有效地形成局部磁場(chǎng),這些磁場(chǎng)在距IC任意位置都可以有效地相互抵消。這就是 Silent Switcher 穩(wěn)壓器背后的概念。

          266086-Fig-03.jpg

          圖3. Silent Switcher 穩(wěn)壓器中的磁場(chǎng)抵消。

          倒裝芯片取代鍵合線

          改善EMI的另一種方法是縮短熱回路中的導(dǎo)線。這可以通過(guò)放棄將芯片連接至封裝引腳的傳統(tǒng)鍵合線方法來(lái)實(shí)現(xiàn)。在封裝中倒裝硅芯片,并添加銅柱。通過(guò)縮短內(nèi)部FET到封裝引腳和輸入電容的距離,可以進(jìn)一步縮小熱回路的范圍。

          圖片1.png

          圖4.LT8610鍵合線的拆解示意圖。

          266086-Fig-05.jpg

          圖5.帶有銅柱的倒裝芯片。

          Silent Switcher與Silent Switcher 2

          1585296555742973.jpg

          圖6.典型的Silent Switcher應(yīng)用原理圖及其在PCB上的外觀。

          圖6顯示了使用Silent Switcher穩(wěn)壓器的一個(gè)典型應(yīng)用,可通過(guò)兩個(gè)輸入電壓引腳上的對(duì)稱輸入電容來(lái)識(shí)別。布局在該方案中非常重要,因?yàn)镾ilent Switcher技術(shù)要求盡可能將這些輸入電容對(duì)稱布置,以便發(fā)揮場(chǎng)相互抵消的優(yōu)勢(shì)。否則,將喪失Silent Switcher技術(shù)的優(yōu)勢(shì)。當(dāng)然,問(wèn)題是如何確保在設(shè)計(jì)及整個(gè)生產(chǎn)過(guò)程中的正確布局。答案就是Silent Switcher 2穩(wěn)壓器。

          Silent Switcher 2

          Silent Switcher 2穩(wěn)壓器能夠進(jìn)一步減少EMI。通過(guò)將電容(VIN電容、INTVCC和升壓電容)集成到LQFN封裝中,消除了EMI性能對(duì)PCB布局的敏感性,從而可以放置到盡可能靠近引腳的位置。所有熱回路和接地層都在內(nèi)部,從而將EMI降至最低,并使解決方案的總占板面積更小。

          266086-Fig-07.jpg

          圖7.Silent Switcher應(yīng)用與Silent Switcher 2應(yīng)用框圖。

          1585296588225943.jpg

          圖8.去封的LT8640S Silent Switcher 2穩(wěn)壓器。

          Silent Switcher 2技術(shù)還可以改善熱性能。LQFN倒裝芯片封裝上的多個(gè)大尺寸接地裸露焊盤有助于封裝通過(guò)PCB散熱。消除高電阻鍵合線還可以提高轉(zhuǎn)換效率。在進(jìn)行EMI性能測(cè)試時(shí), LT8640S  能滿足CISPR 25 Class 5峰值限制要求,并且具有較大的裕量。

          μModule Silent Switcher 穩(wěn)壓器

          借助開(kāi)發(fā)Silent Switcher產(chǎn)品組合所獲得的知識(shí)和經(jīng)驗(yàn),并配合使用現(xiàn)有的廣泛μModule?產(chǎn)品組合,使我們提供的電源產(chǎn)品易于設(shè)計(jì),同時(shí)滿足電源的某些重要指標(biāo)要求,包括熱性能、可靠性、精度、效率和良好的EMI性能。

          圖9所示的 LTM8053 集成了可實(shí)現(xiàn)磁場(chǎng)抵消的兩個(gè)輸入電容以及電源所需的其他一些無(wú)源組件。所有這些都通過(guò)一個(gè) 6.25 mm × 9 mm × 3.32 mm BGA封裝實(shí)現(xiàn),讓客戶可以專心完成的其他部分設(shè)計(jì)。

          266086-Fig-09.jpg

          圖9.LTM8053 Silent Switcher裸露芯片及EMI結(jié)果。

          無(wú)需LDO穩(wěn)壓器——電源案例研究

          典型的高速ADC需要許多電壓軌,其中一些電壓軌噪聲必須非常低才能實(shí)現(xiàn)ADC數(shù)據(jù)表中的最高性能。為了在高效率、小尺寸板空間和低噪聲之間達(dá)成平衡,普遍接受的解決方案是將開(kāi)關(guān)電源與LDO后置穩(wěn)壓器結(jié)合使用,如圖10所示。開(kāi)關(guān)穩(wěn)壓器能夠以更高效率實(shí)現(xiàn)更高的降壓比,但噪聲相對(duì)也較大。低噪聲LDO后置穩(wěn)壓器效率相對(duì)較低,但它可以抑制開(kāi)關(guān)穩(wěn)壓器產(chǎn)生的大部分傳導(dǎo)噪聲。盡可能減小LDO后置穩(wěn)壓器的降壓比有助于提高效率。這種組合能產(chǎn)生干凈的電源,從而使ADC以最高性能運(yùn)行。但問(wèn)題在于多個(gè)穩(wěn)壓器會(huì)使布局更復(fù)雜,并且LDO后置穩(wěn)壓器在較高負(fù)載下可能會(huì)產(chǎn)生散熱問(wèn)題。

          266086-Fig-10.jpg

          圖10.為 AD9625 ADC供電的典型電源設(shè)計(jì)。

          圖10所示的設(shè)計(jì)顯然需要進(jìn)行一些權(quán)衡取舍。在這種情況下,低噪聲是優(yōu)先考慮事項(xiàng),因此效率和電路板空間必須做些讓步。但也許不必如此。最新一代的Silent Switcher μModule器件將低噪聲開(kāi)關(guān)穩(wěn)壓器設(shè)計(jì)與μModule封裝相結(jié)合,能夠同時(shí)實(shí)現(xiàn)易設(shè)計(jì)、高效率、小尺寸和低噪聲的目標(biāo)。這些穩(wěn)壓器不僅盡可能減少了電路板占用空間,而且實(shí)現(xiàn)了可擴(kuò)展性,可使用一個(gè)μModule穩(wěn)壓器為多個(gè)電壓軌供電,進(jìn)一步節(jié)省了空間和時(shí)間。圖11顯示了使用 LTM8065 Silent Switcher μModule穩(wěn)壓器為ADC供電的電源樹(shù)替代方案。

          266086-Fig-11.jpg

          圖11.使用Silent Switcher μModule穩(wěn)壓器為AD9625供電,可節(jié)省空間的解決方案。

          這些設(shè)計(jì)都已經(jīng)過(guò)相互測(cè)試比較。ADI公司最近發(fā)表的一篇文章對(duì)使用圖10和圖11所示電源設(shè)計(jì)的ADC性能進(jìn)行了測(cè)試和比較1。測(cè)試包括以下三種配置:

          ●   使用開(kāi)關(guān)穩(wěn)壓器和LDO穩(wěn)壓器為ADC供電的標(biāo)準(zhǔn)配置。

          ●   使用LTM8065直接為ADC供電,不進(jìn)行進(jìn)一步的濾波。

          ●   使用LTM8065和額外的輸出LC濾波器,進(jìn)一步凈化輸出。

          測(cè)得的 SFDR 和 SNRFS 結(jié)果表明,LTM8065 可用于直接為 ADC 供電,并不會(huì)影響 ADC 的性能。

          這個(gè)實(shí)施方案的核心優(yōu)勢(shì)是大大減少了元件數(shù)量,從而提高了效率,簡(jiǎn)化了生產(chǎn)并減少了電路板占位空間。

          小結(jié)

          總之,隨著更多系統(tǒng)級(jí)設(shè)計(jì)需要滿足更加嚴(yán)格的規(guī)范,盡可能充分利用模塊化電源設(shè)計(jì)變得至關(guān)重要,尤其在電源設(shè)計(jì)專業(yè)經(jīng)驗(yàn)有限的情況下。由于許多細(xì)分市場(chǎng)要求系統(tǒng)設(shè)計(jì)必須符合最新的EMI規(guī)范要求,因此將Silent Switcher技術(shù)運(yùn)用于小尺寸設(shè)計(jì),同時(shí)借助μModule穩(wěn)壓器簡(jiǎn)單易用的特性,可以大大縮短產(chǎn)品上市時(shí)間,同時(shí)還可以節(jié)省電路板空間。

          Silent Switcher μModule穩(wěn)壓器的優(yōu)勢(shì)

          ●   節(jié)省PCB布局設(shè)計(jì)時(shí)間(無(wú)需重新設(shè)計(jì)電路板即可解決噪聲問(wèn)題)。

          ●   無(wú)需額外的EMI濾波器(節(jié)省元件和電路板空間成本)。

          ●   降低了內(nèi)部電源專家進(jìn)行電源噪聲調(diào)試的需求。

          ●   在寬工作頻率范圍內(nèi)提供高效率。

          ●   為噪聲敏感型器件供電時(shí),無(wú)需使用LDO后置穩(wěn)壓器。

          ●   縮短設(shè)計(jì)周期。

          ●   在盡可能小的電路板空間中實(shí)現(xiàn)高效率。

          ●   良好的熱性能。

          參考文獻(xiàn)

          1 Aldrick Limjoco、Patrick Pasaquian和Jefferson Eco,“Silent Switcher μModule穩(wěn)壓器為GSPS采樣ADC提供低噪聲供電,并節(jié)省一半空間”ADI公司,2018年10月。

          作者簡(jiǎn)介

          Bhakti Waghmare現(xiàn)任Power by Linear產(chǎn)品部μModule穩(wěn)壓器的產(chǎn)品營(yíng)銷工程師,工作地點(diǎn)在美國(guó)加利福尼亞州圣克拉拉市。她負(fù)責(zé)μModule穩(wěn)壓器電源產(chǎn)品的市場(chǎng)營(yíng)銷支持。Bhakti于2018年加入ADI公司。她擁有韋恩州立大學(xué)(位于美國(guó)密歇根州底特律)機(jī)械工程學(xué)士學(xué)位和工業(yè)工程碩士學(xué)位。

          Diarmuid Carey是歐洲中央應(yīng)用中心的應(yīng)用工程師,工作地點(diǎn)在愛(ài)爾蘭利默里克。他自2008年以來(lái)一直擔(dān)任應(yīng)用工程師,并于2017年加入ADI公司,為歐洲的眾多市場(chǎng)客戶提供Power by Linear產(chǎn)品組合的設(shè)計(jì)支持。他擁有利默里克大學(xué)計(jì)算機(jī)工程學(xué)士學(xué)位。



          關(guān)鍵詞: EMI 電路板

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();