PCIM2024論文摘要|離網(wǎng)場(chǎng)景下SiC MOSFETs應(yīng)用于三相四橋臂變流器的優(yōu)勢(shì)
隨著全球低碳化的進(jìn)程,可再生能源發(fā)電占比及滲透率越來(lái)越高,此種背景下,儲(chǔ)能系統(tǒng)的引入有效抑制了新能源發(fā)電的波動(dòng)性,PCS作為儲(chǔ)能系統(tǒng)的核心裝置應(yīng)用廣泛。在工商業(yè)應(yīng)用里,存在單相負(fù)載與三相不平衡負(fù)載,為了滿足單相供電需求以及對(duì)三相不平衡電壓的抑制,三相四線變流器拓?fù)涫欠浅1匾?,常?jiàn)的拓?fù)湫问接幸韵聨追N:
a)三橋臂分裂電容式拓?fù)?/span>
b) 平衡橋臂拓?fù)?/span>
圖一
分裂電容式拓?fù)?,由于N線電流流過(guò)母線電容,電容容量需求增大,且直流電壓利用率較低,諧波畸變較大,抑制三相不平衡能力相對(duì)有限,平衡橋臂式拓?fù)渫ㄟ^(guò)硬件電路增強(qiáng)中點(diǎn)平衡控制能力,帶不平衡負(fù)載能力得到一定加強(qiáng)。
圖二、三相四橋臂拓?fù)?/span>
三相四橋臂拓?fù)?,也為本文主要研究拓?fù)?,增加了第四橋臂以增加控制自由度,電容容量的需求小于前者??刹捎?d-SVPWM調(diào)制或三次諧波注入的載波調(diào)制方法,將三相解耦為獨(dú)立的單相控制,可以處理100%的不平衡電流,直流電壓利用率也得到了提升,但諧波表現(xiàn)依舊差于三相三線拓?fù)?,需要采用合適功率器件與拓?fù)鋪?lái)改善。
SiC材料對(duì)比Si材料具有更高的電子漂移速率,同時(shí)SiC MOSFET由于其單極性導(dǎo)電特性,不存在IGBT關(guān)斷時(shí)的拖尾現(xiàn)象,Eoff相較IGBT大幅減小,SiC二極管反向恢復(fù)能量很小,因此SiC MOSFET的開通損耗也遠(yuǎn)小于Si IGBT,下圖為同電流規(guī)格的SiC MOSFET與IGBT開關(guān)損耗的基準(zhǔn)對(duì)比,相同電流情況下SiC MOSFET顯示出更優(yōu)的開關(guān)損耗以及更小的溫度相關(guān)性。
由于IGBT pnpn的四層結(jié)構(gòu),導(dǎo)通特性存在一個(gè)轉(zhuǎn)折壓降,而SiC MOSFET的輸出特性曲線類似于一條正比例直線,在小電流區(qū)域內(nèi),SiC MOSFET具有明顯更小的導(dǎo)通損耗,對(duì)比如下圖。
圖三、同電流規(guī)格SiC MOSFET與IGBT損耗對(duì)比
三相四橋臂變流器與三相三橋臂變流器輸出的相電壓電流波形如下,三相四橋臂拓?fù)潆妷号_(tái)階減少,諧波畸變更大,在相同的濾波器參數(shù)下,3P4L拓?fù)涞妮敵鲭娏鱐HD較3P3L拓?fù)渥儾?9.5%,因此對(duì)于3P4L變流器,為滿足系統(tǒng)諧波要求,如果采用IGBT方案需要應(yīng)用多重化拓?fù)浠蛉娖酵負(fù)?,都?huì)大大增加系統(tǒng)成本,而采用SiC MOSFETs方案,由于開關(guān)頻率的顯著提升,兩電平拓?fù)浼纯蓾M足系統(tǒng)諧波需求,本文應(yīng)用PLECS仿真,定量對(duì)比三電平三相四橋臂IGBT方案與兩電平三相四橋臂SiC MOSFET方案,采用同等電流規(guī)格分立器件,SiC MOSFETs方案在系統(tǒng)效率,電流諧波畸變,濾波器參數(shù)選擇,器件溫升層面都具有一定優(yōu)勢(shì),以此說(shuō)明在三相四橋臂拓?fù)湎耂iC方案的價(jià)值所在。
a) 3P3L拓?fù)漭敵鱿嚯妷合嚯娏鞑ㄐ?,電流THD=3.23%
b) 3P4L拓?fù)漭敵鱿嚯妷合嚯娏鞑ㄐ?,電流THD=4.83%
圖四
評(píng)論