基于FPGA的通用位同步器設計方案(二)
式中:Fw 為頻率控制字;W (mk ) 為環(huán)路濾波器輸出的誤差信號,二者由環(huán)路濾波器提供,決定了NCO的溢出周期。其中,當:
NCO 溢出信號即為提取出的位同步信號的2 倍頻(2BS),經(jīng)2分頻后可以得到位同步脈沖(BS)輸出,2BS同時作為內(nèi)插濾波器和誤差間隔計算的使能信號。
誤差間隔μk 在NCO 溢出后的下一個Ts 時刻進行計算,環(huán)路鎖定時:
將其截斷為8位數(shù)據(jù)送給內(nèi)插濾波器。
本設計同時對代碼進行了優(yōu)化,數(shù)據(jù)有效位的截取、內(nèi)插濾波器的結構優(yōu)化、乘法采用移位計算代替等措施,有效地節(jié)省了硬件資源,優(yōu)化前和優(yōu)化后的資源占用情況對比見表1.
3 仿真和分析
3.1 Matlab仿真
本文采用Matlab對算法進行理論仿真,輸入采樣值x(m) 為[-1,1]之間的隨機碼,采樣頻率上限為20 MHz,令碼元速率分別為2 Kb/s,600 Kb/s,10 Mb/s,環(huán)路濾波器、內(nèi)部控制器參數(shù)隨碼元速率變化。取內(nèi)插濾波器的插值輸出y(kTi) 做散射圖分析,驗證對不同速率的基帶信號,內(nèi)插值是否接近最佳判決值,如圖7所示。
從圖7可以看出,在基帶速率和采樣率滿足奈奎斯特定理的條件下,該仿真輸出的內(nèi)插值均集中在理想值 -1和1周圍,雖然有一定的模糊,且頻率越高,模糊程度越大,但碼元判決閾值在0值點,所以判決值無需嚴格為±1,該圖表明對于較寬速率范圍內(nèi)的基帶信號,輸出的插值均能夠較好地用于碼元判決,即算法正確。
3.2 FPGA仿真
在Quartus下對本設計進行仿真?;鶐盘柌捎肕 序列,由FPGA生成,令基帶碼速率分別為2 Kb/s,600 Kb/s,1 Mb/s,同時分頻器、NCO 及環(huán)路濾波器參數(shù)也做相應設置,仿真結果如圖8所示。
評論