紅外圖像的邊緣提取
r(x,y)=max{gi(x,y)|?坌i} (3)
設(shè)定閾值t,得到二值化邊緣圖像:
R(x,y)=1 r(x,y)≥t0 r(x,y)t (4)
2.2 計(jì)算步驟
?。?)輸入原始圖像A,通過對(duì)原始圖像A在微動(dòng)方向上平移,生成綜合微動(dòng)圖像F。F=[Ah,Av,Ad],其中h、v、d分別代表水平、垂直和傾斜方向。本文分別將圖像A向8個(gè)方向平移,移動(dòng)距離為一個(gè)像素單位。
?。?)計(jì)算各微動(dòng)方向的邊緣圖像H:
Ci=Fi-A, i=h,v,d (5)
(3)計(jì)算競(jìng)爭(zhēng)灰度邊緣圖像H:
H=max(Ci), i=h,v,d (6)
?。?)將競(jìng)爭(zhēng)灰度邊緣圖像H重新量化到[0,255]。
?。?)為了減少偽邊緣的產(chǎn)生,對(duì)競(jìng)爭(zhēng)邊緣圖像H進(jìn)行均值濾波處理:
G=mean(H) (7)
?。?)對(duì)量化濾波后的灰度邊緣圖像,采用非極大值抑制和雙閾值檢測(cè)邊緣連接處理,得到二值邊緣圖像。
2.3 非極大值抑制
直接對(duì)經(jīng)過量化濾波的競(jìng)爭(zhēng)灰度邊緣圖像進(jìn)行二值化操作并不能準(zhǔn)確地提取出圖像的邊緣,因此需要對(duì)經(jīng)過量化濾波的競(jìng)爭(zhēng)灰度邊緣圖像的幅值進(jìn)行非極大值抑制來進(jìn)一步確定邊緣點(diǎn)。若圖像G(x,y)上(i,j)像素點(diǎn)的邊緣強(qiáng)度G(i,j)小于沿平移線方向上的兩個(gè)相鄰像素點(diǎn)的邊緣強(qiáng)度,則認(rèn)為該像素點(diǎn)為非邊緣點(diǎn),將其灰度值設(shè)為0。即保留幅值局部變化最大的點(diǎn),細(xì)化幅值圖像中的屋脊帶。
2.4 雙閾值檢測(cè)及邊緣連接
由于圖像中噪聲和邊緣都屬于高頻部分,經(jīng)過非極大值抑制處理過的邊緣圖像仍然有很大一部分是屬于噪聲的偽邊緣點(diǎn),因此必須進(jìn)行去噪處理[7]。本文采用高低雙閾值的方法實(shí)現(xiàn)此去噪過程。設(shè)定高、低兩個(gè)閾值,高閾值處理后的邊緣圖像能去除大部分噪聲,得到尺寸較大的清晰邊緣,但同時(shí)也損失了一些有用的細(xì)節(jié)邊緣信息;低閾值去噪處理后圖像保留了較多的信息,能保留細(xì)微邊緣,但是產(chǎn)生了較多的偽邊緣。經(jīng)過雙閾值化處理之后能夠得到兩幅不同特征二值邊緣圖像。以高閾值邊緣圖像為基礎(chǔ),以低閾值邊緣圖像為補(bǔ)充進(jìn)行邊緣連接,實(shí)現(xiàn)最終的圖像邊緣提取。
評(píng)論