改進(jìn)封裝技術(shù) 提高HB LED光通量
用LED背光取代手持裝置原有的EL背光、CCFL背光,不僅電路設(shè)計(jì)更簡(jiǎn)潔容易,且有較高的抗外力性。用LED背光取代液晶電視原有的CCFL背光,不僅更環(huán)保而且顯示更逼真亮麗。用LED照明取代白光燈、鹵素?zé)舻日彰?,不僅更光亮省電,使用也更長(zhǎng)效,且點(diǎn)亮反應(yīng)更快,用于煞車燈時(shí)能減少后車追撞率。所以,LED從過去只能用在電子裝置的狀態(tài)指示燈,進(jìn)步到成為液晶顯示的背光,再擴(kuò)展到電子照明及公眾顯示,如車用燈、交通信號(hào)燈、信息廣告牌、大型影視墻,甚至是投影機(jī)內(nèi)的照明等,其應(yīng)用仍在持續(xù)延伸。更重要的是,LED的亮度效率就如同摩爾定律(Moore''s Law)一樣,每24個(gè)月提升一倍,過去認(rèn)為白光LED只能用來取代過于耗電的白熾燈、鹵素?zé)?,即發(fā)光效率在10~30lm/W內(nèi)的層次,然而在白光LED突破60lm/W甚至達(dá)100lm/W后,就連熒光燈、高壓氣體放電燈等也開始感受到威脅。
雖然LED持續(xù)增強(qiáng)亮度及發(fā)光效率,但除了核心的熒光質(zhì)、混光等專利技術(shù)外,對(duì)封裝來說也將是愈來愈大的挑戰(zhàn),且是雙重難題的挑戰(zhàn),一方面封裝必須讓LED有最大的取光率、最高的光通量,使光折損降至最低,同時(shí)還要注重光的發(fā)散角度、光均性、與導(dǎo)光板的搭配性。另一方面,封裝必須讓LED有最佳的散熱性,特別是HB(高亮度)幾乎意味著HP(高功率、高用電),進(jìn)出LED的電流值持續(xù)在增大,倘若不能良好散熱,則不僅會(huì)使LED的亮度減弱,還會(huì)縮短LED的使用壽命。所以,持續(xù)追求高亮度的LED,其使用的封裝技術(shù)若沒有對(duì)應(yīng)的強(qiáng)化提升,那么高亮度表現(xiàn)也會(huì)因此打折,因此本文將針對(duì)HB LED的封裝技術(shù)進(jìn)行更多討論,包括光通方面的討論,也包括熱導(dǎo)方面的討論。
裸晶層:“量子井、多量子井”提升“光轉(zhuǎn)效率”
雖然本文主要在談?wù)揕ED封裝對(duì)光通量的強(qiáng)化,但在此也不得不先說明更深層核心的裸晶部分,畢竟裸晶結(jié)構(gòu)的改善也能使光通量大幅提升。首先是強(qiáng)化光轉(zhuǎn)效率,這也是最根源之道,現(xiàn)有LED的每瓦用電中,僅有15%~2%被轉(zhuǎn)化成光能,其余都被轉(zhuǎn)化成熱能并消散掉(廢熱),而提升此一轉(zhuǎn)換效率的重點(diǎn)就在p-n接面(p-n junction)上,p-n接面是LED主要的發(fā)光發(fā)熱位置,透過p-n接面的結(jié)構(gòu)設(shè)計(jì)改變可提升轉(zhuǎn)化效率。目前多是在p-n接面上開鑿量子井(Quantum Well;QW),以此來提升用電轉(zhuǎn)換成光能的比例,更進(jìn)一步的也將朝更多的開鑿數(shù)來努力,即是多量子井(Multiple Quantum Well;MQW)技術(shù)。
“換料改構(gòu)、光透光折”拉高“出光效率”
如果光轉(zhuǎn)效率難再要求,進(jìn)一步的就必須從出光效率的層面下手,此層面的作法相當(dāng)多,依據(jù)不同的化合材料也有不同,目前HB LED較常使用的兩種化合材料是AlGaInP及GaN/InGaN,前者用來產(chǎn)生高亮度的橘紅、橙、黃、綠光,后者GaN用來產(chǎn)生綠、翠綠、藍(lán)光,以及用InGaN產(chǎn)生近紫外線、藍(lán)綠、藍(lán)光。方法包括改變實(shí)體幾何結(jié)構(gòu)(橫向轉(zhuǎn)成垂直)、換用基板(substrate,也稱:襯底)的材料、加入新的材料層、改變材料層的接合方式、不同的材料表面處理等。不過,無(wú)論如何變化,大體都不離兩個(gè)原則:一、降低遮蔽、增加光透率。二、強(qiáng)化光折射、反射的利用率。如過去AlGaInP的LED,其基板所用的材料為GaAs,然黑色表面的GaAs使p-n接面散發(fā)出的光有一半被遮擋吸收,造成光能的浪費(fèi),因此改用透明的GaP材料來做基板。又如日本日亞化學(xué)工業(yè)(Nichia),將p型電極(p type)部分做成網(wǎng)紋狀(Mesh Pattern),以此來增加p極的透明度,減少光阻礙同時(shí)提升光透量。至于增加折反射上,在AlGaInP的結(jié)構(gòu)中增加一層DBR(Distributed Bragg Reflector)反射層,將另一邊的光源折向同一邊。GaN方面則將基板材料換成藍(lán)寶石(三氧化二鋁)來增加反射,同時(shí)將基板表面設(shè)計(jì)成凹凸紋狀,藉此增加光反射后的散射角度,進(jìn)而使取光率提升?;蛉绲聡?guó)歐司朗(OSRAM)使用SiC材料的基板,并將基板設(shè)計(jì)成斜面,也有助于增加反射,或加入銀質(zhì)、鋁質(zhì)的金屬鏡射層。
封裝層:抗老化黃光、透光率保衛(wèi)戰(zhàn)
從裸晶層面努力增加光亮后,接著就正式從封裝層面接手,務(wù)使光通維持最高、光衰減至最少。
要有高的流明保持率(Transmittance),第一步是封裝材質(zhì)。過去LED最常用的是環(huán)氧樹脂(epoxy),但環(huán)氧樹脂老化后會(huì)逐漸變黃,進(jìn)而影響光亮顏色,尤其波長(zhǎng)愈低時(shí)老化愈快,特別是部分WLED使用近紫外線(Near ultraviolet)發(fā)光,與其它可見光相比其波長(zhǎng)又更低,老化更快。新的提案是用硅樹脂(silicone),例如美國(guó)Lumileds公司的Luxeon系列LED即是改采硅封膠。不只是Lumileds Luxeon,其它業(yè)者也都有硅膠方案,如通用電氣.東芝公司的InvisiSi1,東麗.道康寧的SR 7010等也都是LED的硅膠封裝方案。
硅膠除了對(duì)低波長(zhǎng)有較佳的抗受性、較不易老化外,硅膠阻隔近紫外線使其不外泄也是對(duì)人體健康的一種保護(hù),此外硅膠的光透率、折射率、耐熱性都很理想。GE Toshiba的InvisiSi1具有高達(dá)1.5~1.53的折射率,波長(zhǎng)范疇在350nm~800nm間的光透率達(dá)95%,且波長(zhǎng)低至300nm時(shí)仍有75%~80%的光透,將折射率降至1.41,即便是300nm波長(zhǎng)也能維持95%的光透性。Dow Coring Toray的SR 7010在405nm波長(zhǎng)以上時(shí)光透率達(dá)99%,且硬化處理后折射率亦有1.51,另外耐熱上也都能達(dá)180℃~200℃的水平。此外,也有業(yè)者提出所謂的無(wú)樹脂封裝,即是用玻璃來作為外套保護(hù),如日本京瓷(Kyocera)提出的陶瓷封裝,都是為了抗老化而提出,其中陶瓷也有較佳的耐熱效果。
封裝層:透鏡的透射 反射杯的反射、折射
在用膠封裝完后,依據(jù)LED的不同用途會(huì)有各種不同的接續(xù)作法,例如做成一個(gè)一個(gè)的獨(dú)立封裝組件,過去最典型的單顆LED指示燈即是如此。另一種則是將多個(gè)LED并成一個(gè)整體性組件,如七段顯示器、點(diǎn)陣型顯示器等。此外焊接腳位方面也有兩種區(qū)分,即穿孔技術(shù)(Through-Hole Technology)及表面黏著技術(shù)(Surface-Mount Technology)。
就逐一獨(dú)立、分離、離散性的封裝來說,也要因應(yīng)不同的應(yīng)用而有不同的封裝外觀。若是作為穿孔性焊接的狀態(tài)指示燈則只要采行燈泡(Lamp)型態(tài)的封裝(俗稱成“炮彈型”),即便是此也還有透鏡型態(tài)(Lens Type)的區(qū)別,如典型Lamp、卵橢圓Oval、超卵橢圓Super Oval、平直Flat等。而若是表面黏著型,也有頂視Top View、邊視Side View、圓頂Dome等。
為何要有各種不同的透鏡外型?就一般而言,Lamp用來做指示燈號(hào)、Oval用于戶外標(biāo)示或號(hào)志、Top View用來做直落式的背光、Flat與Side View配合導(dǎo)光板(Guide Plate)作側(cè)邊入光式的背光、Dome作為小型照明燈泡、小型閃光燈等。外型不同、應(yīng)用不同,發(fā)光的可視角度(View Angle)也就不同,此部分也就再次考驗(yàn)封裝設(shè)計(jì)。運(yùn)用不同的設(shè)計(jì)方式,可以獲得不同的發(fā)光角度、光強(qiáng)度、光通量,此方面常見的做法有四:中軸透鏡Axial lens、平直透鏡Flat lens、反射杯Reflective cup、島塊反射杯Reflective cup by island。一般的Lamp用的即是中軸透鏡法,Dome及Oval/Super Oval等也類似,但Oval/Super Oval的光亮比Lamp更集中在軸向的小角度內(nèi)。而Flat則是用平直透鏡法,好處是光視角比中軸透鏡法更大,但缺點(diǎn)是光通量降低、光強(qiáng)度減弱。至于Top View、Side View等則多用反射杯或島塊反射杯,此作法是在封裝內(nèi)加入反射鏡,對(duì)部分發(fā)散角度的光束進(jìn)行反射、折射等收斂動(dòng)作,使角度與光強(qiáng)度能取得平衡。
就技術(shù)難易來說,只用上透鏡的Axial lens、Flat lens較為簡(jiǎn)易,只要考慮透射與光束發(fā)散性,相對(duì)的有Reflective cup就不同了,原有的透射、發(fā)散都要考慮,還要考慮反射、折射以及光束收斂,更加復(fù)雜。
材質(zhì)方面,透鏡部分除了可持續(xù)用原有的覆膠材質(zhì)外也可以改用其它材質(zhì),因?yàn)橥哥R已較為講究光透而不講究裸晶防護(hù),如此還可采行塑料(Plastic)、壓克力(Acrylic)、玻璃(Glass)、聚碳酸酯(Polycarbonate)等,且如之前所述,光透性與波長(zhǎng)有關(guān),不同波長(zhǎng)光透度不同,再加上有不同的材質(zhì)可選擇,甚至要為透鏡上色,好增加光色的對(duì)比度,或視應(yīng)用場(chǎng)合的裝飾效果(玩具、圣誕樹),還有前面的透鏡、反射杯等幾何設(shè)計(jì)等,以上種種構(gòu)成了LED光通上的第四道課題。
結(jié)語(yǔ)
HB LED被人強(qiáng)調(diào)為“綠色照明”,言下之意“環(huán)?!笔瞧浜艽蟮脑V求點(diǎn),所以不僅要無(wú)鉛(Pb Free)封裝,還要合乎今日歐洲RoHS(限用危害物質(zhì)指令)的法令規(guī)范,無(wú)論封裝與LED整體都不能含有汞、鎘、六價(jià)鉻(hexavalent c h romium)、多溴聯(lián)苯(PolyBrominated Biphenyls;PBB)、多溴聯(lián)苯醚(PolyBrominated Diphenyl Ether;PBDE)等環(huán)境有害物,此外WEEE(廢棄電子電機(jī)設(shè)備指令)等其它相關(guān)法規(guī)也必須遵守。
前面我們也已經(jīng)簡(jiǎn)略提到封裝物必須能封阻與抗受低波長(zhǎng)、紫外光,還要有一定的硬度來抗受機(jī)械外力,以及耐熱性,此外絕緣、抗靜電、抗?jié)褚捕急仨氉⒁狻8匾氖?,無(wú)論是否高亮度,都必須盡可能將光亮導(dǎo)出,因?yàn)?,若不能忠?shí)導(dǎo)出光能,光能在封裝層內(nèi)被吸收,就會(huì)轉(zhuǎn)化成熱能,為封裝上的散熱問題又添一項(xiàng)課題,LED的熱若不能順利排解與降低,成為熱負(fù)荷,反過來一樣要傷害LED本體,包括亮度也會(huì)受到影響,因此,達(dá)到最佳、最理想的光通,是封裝設(shè)計(jì)必然要重視課題!
評(píng)論