<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 電源與新能源 > 設計應用 > 電子設計基礎:電阻電橋基礎(二)

          電子設計基礎:電阻電橋基礎(二)

          作者: 時間:2012-04-30 來源:網絡 收藏

            概述

            本文第一部分,應用筆記3426::第一部分,主要論述了為什么要使用,電橋的基本配置,以及一些具有小信號輸出的電橋,例如粘貼絲式或金屬箔應變計。本篇應用筆記則側重于高輸出的硅應變計。本篇應用筆記作為第二部分,重點介紹高輸出的硅應變計,以及它與高分辨率Σ-Δ模數轉換器良好的適配性。舉例說明了如何為給定的非補償傳感器計算所需ADC的分辨率和動態(tài)范圍。本文演示了在構建一個簡單的比例電路時,如何確定ADC和硅應變計的特性,并給出了一個采用電流驅動傳感器的簡化應用電路。

            硅應變計的背景知識

            硅應變計的優(yōu)點在于高靈敏度。硅材料中的應力引起體電阻的變化。相比那些僅靠電阻的尺寸變化引起電阻變化的金屬箔或粘貼絲式應變計,其輸出通常要大一個數量級。這種硅應變計的輸出信號大,可以與較廉價的電子器件配套使用。但是,這些小而脆的器件的安裝和連線非常困難,并增加了成本,因而限制了它們在粘貼式應變計應用中的使用。然而,硅應變計卻是MEMS (微機電結構)應用的最佳選擇。利用MEMS,可將機械結構建立在硅片上,多個應變計可以作為機械構造的一部分一起制造。因此,MEMS工藝為整個設計問題提供了一個強大的、低成本的解決方案,而不需要單獨處理每個應變計。

            MEMS器件最常見的一個實例是硅壓力傳感器,它是從上個世紀七十年代開始流行的。這些壓力傳感器采用標準的半導體工藝和特殊的蝕刻技術制作而成。采用這種特殊的蝕刻技術,從晶圓片的背面選擇性地除去一部分硅,從而生成由堅固的硅邊框包圍的、數以百計的方形薄片。而在晶片的正面,每一個小薄片的每個邊上都制作了一個壓敏電阻。用金屬線把每個小薄片周邊的四個電阻連接起來就形成一個全橋工作的惠斯登電橋。然后使用鉆鋸從晶片上鋸下各個傳感器。這時,傳感器功能就完全具備了,但還需要配備壓力端口和連接引線方可使用。這些小傳感器便宜而且相對可靠。但也存在缺點。這些傳感器受溫度變化影響較大,而且初始偏移和靈敏度的偏差很大。

            壓力傳感器實例

            在此用一個壓力傳感器來舉例說明。但所涉及的原理適用于任何使用相似類型的電橋作為傳感器的系統(tǒng)。式1給出了一個原始的壓力傳感器的輸出模型。式1中變量的幅值及其范圍使VOUT在給定壓力(P)下具有很寬的變化范圍。不同傳感器在同一溫度下,或者同一傳感器在不同溫度下,其VOUT都有所不同。要提供一個一致的、有意義的輸出,每個傳感器都必須進行校正,以補償器件之間的差異和溫度漂移。長期以來都是使用模擬電路進行校準的。然而,現代電子學使得數字校準比模擬校準更具成本效益,而且數字校準的準確性也更好。利用一些模擬“竅門”,可以在不犧牲精度的前提下簡化數字校準。

            VOUT = VB × (P × S0 × (1 + S1 × (T - T0)) + U0 + U1 × (T - T0))(式1)

            式中,VOUT為電橋輸出,VB是電橋的激勵電壓,P是所加的壓力,T0是參考溫度,S0是T0溫度下的靈敏度,S1是靈敏度的溫度系數(TCS),U0是在無壓力時電橋在溫度T0輸出的偏移量(或失衡),而U1則是偏移量的溫度系數(OTC)。

            式1使用一次多項式來對傳感器進行建模。有些應用場合可能會用到高次多項式、分段線性技術、或者分段二次逼近模型,并為其中的系數建立一個查尋表。無論使用哪種模型,數字校準時都要對VOUT、VB和T進行數字化,同時要采用某種方式來確定全部系數,并進行必要的計算。式2由式1整理并解出P。從式2可以更清楚地看到,為了得到精確的壓力值,數字計算(通常由微控制器(micro;C)執(zhí)行)所需的信息。

            P = (VOUT/VB - U0 - U1 × (T-T0))/(S0 × (1 + S1 × (T-T0))(式2)

            電壓驅動

            圖1電路中的電壓驅動方式使用一個高精度ADC來對VOUT (AIN1/AIN2)、溫度(AIN3/AIN4)和VB (AIN5/AIN6)進行數字化。這些測量值隨后被傳送到μC,在那里計算實際的壓力。電橋直接由電源驅動,這個電源同時也為ADC、電壓基準和μC供電。電路圖中標有Rt的電阻式溫度檢測器用來測量溫度。通過ADC內的輸入復用器同時測量電橋、RTD和電源電壓。為確定校準系數,整個系統(tǒng)(或至少是RTD和電橋)被放到溫箱里,向電橋施加校準過的壓力,并在多個不同溫度下進行測量。測量數據通過測試系統(tǒng)進行處理,以確定校準系數。最終的系數被下載到μC并存儲到非易失性存儲器中。

            電子設計基礎:電阻電橋基礎(二)

            圖1. 該電路直接測量計算實際壓力所需的變量(激勵電壓、溫度和電橋輸出)

            設計該電路時主要應考慮的是動態(tài)范圍和ADC的分辨率。最低要求取決于具體應用和所選的傳感器和RTD的參數。為了舉例說明,使用下列參數:

            系統(tǒng)規(guī)格

            滿量程壓力:100psi

            壓力分辨率:0.05psi

            溫度范圍:-40°C到+85°C

            電源電壓:4.75到5.25V

            壓力傳感器規(guī)格

            S0 (靈敏度): 150到300μV/V/psi

            S1 (靈敏度的溫度系數): 最大-2500ppm/°C

            U0 (偏移): -3到+3mV/V

            U1 (偏移的溫度系數): -15到+15μV/V/°C

            RB (輸入電阻): 4.5k

            TCR (電阻溫度系數): 1200ppm/°C

            RTD: PT100

            α: 3850ppm/°C (ΔR/°C = 0.385,Ω額定值)

            -40°C時的值: 84.27Ω

            0°C時值: 100Ω

            85°C時值: 132.80Ω

            關于PT100的更多細節(jié),請參見Maxim的》應用筆記3450:“PT100溫度變送器的正溫度系數補償”。

            電壓分辨率

            能夠接受的最小電壓分辨率可根據能夠檢測到的最小壓力變化所對應的VOUT得到。極端情況為使用最低靈敏度的傳感器,在最高溫度和最低供電電壓下進行測量。注意,式1中的偏移項不影響分辨率,因為分辨率僅與壓力響應有關。

            使用式1以及上述假設:

            ΔVOUT min = 4.75V (0.05psi/count 150μV/V/psi × (1+ (-2500ppm/°C) × (85°C -25°C)) ≈ 30.3μV/count

            所以: 最低ADC分辨率 = 30μV/count

            輸入范圍

            輸入范圍取決于最大輸入電壓和最小或者最負的輸入電壓。根據式1,產生最大VOUT的條件是:最大壓力(100psi)、最低溫度(-40°C)、最大電源電壓(5.25V)和3mV/V的偏移、-15μV/V/°C的偏移溫度系數、-2500ppm/°C的TCS、以及最高靈敏度的芯片(300μV/V/psi)。最負信號一般都在無壓力(P=0)、電源電壓為5.25V、-3mV/V的偏移、-40°C的溫度以及OTC等于+15μV/V/°C的情況下出現。

            再次使用公式1以及上述假設:

            VOUT max = 5.25V × (100psi middot; 300μV/V/psi × (1+ (-2500ppm/°C) × (-40°C - 25°C)) + 3mV/V + (-0.015mV/V/°C) × (-40°C - 25°C)) - 204mV

            VOUT min = 5.25 × (-3mV/V + (0.015mV/V/°C × (-40°C - 25°C))) - -21mV

            因此:ADC的輸入范圍 = -21mV到+204mV

            分辨位數

            適用于本應用的ADC應具有-21mV到+204mV 的輸入范圍和30μV/count的電壓分辨率。該ADC的編碼總數為(204mV + 21mV)/(30μV/count) = 7500 counts,或稍低于13位的動態(tài)范圍。如果傳感器的輸出范圍與ADC的輸入范圍完全匹配,那么一個13位的轉換器就可以滿足需要。由于-21mV到+204mV的量程與通常的ADC輸入范圍都不匹配,因此需要或者對輸入信號進行電平移動和放大,或者選用更高分辨率的ADC。幸運的是,現代的Σ-Δ轉換器的分辨率高,具有雙極性輸入和內部放大器,使高分辨率ADC的使用變?yōu)楝F實。這些Σ-Δ ADC提供了一個更為經濟的方案,而不需要增加其它元器件。這不僅減小了電路板尺寸,還避免了放大和電平移位電路所引入的漂移誤差。

            工作于5V電源的典型Σ-Δ轉換器,采用2.5V參考電壓,具有±2.5V的輸入電壓范圍。為了滿足我們對于壓力傳感器分辨率的要求,這種ADC的動態(tài)范圍應當是:(2.5V - (- 2.5V))/(30μV/count) = 166,667 counts。這相當于17.35位,很多ADC都能滿足該要求,例如18位的


          上一頁 1 2 3 下一頁

          評論


          相關推薦

          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();