基于PC和FPGA的運動控制系統(tǒng)
3.2.1 最小偏差法插補進給規(guī)則
最小偏差法直線插補是將直角坐標的每個象限都用45°斜線分成兩個區(qū)域,4個象限共分為8個區(qū)域,稱為8個卦限,用0~7表示在某一卦限內(nèi),直線插補根據(jù)軌跡點偏差的大小選擇沿相應軸方向或?qū)蔷€方向進給。圓弧插補同樣把一個圓分成8卦限,將圓弧中心作為坐標原點,在不同的卦限,其進給方向不同[5]。如圖5所示為第1象限中0卦限和1卦限的進給示意。
3.2.2 插補模塊實現(xiàn)
插補模塊在FPGA中實現(xiàn)的流程圖如圖6所示。
3.2.3 插補模塊的速度補償
由于最小偏差比較法的進給規(guī)則是單次沿軸向或者沿對角線方向進給,系統(tǒng)實際運行時的速度會因為曲線各處斜率的不同而變化,降低了運行速度的穩(wěn)定性。為了解決這個問題,可以從驅(qū)動狀態(tài)機的時鐘輸入上進行考慮。由于脈沖的產(chǎn)生是通過狀態(tài)機實現(xiàn)的,因此可以通過降低沿軸向運動時的脈沖源頻率,提高沿對角線方向的脈沖源頻率來平衡不同斜率軌跡點的運行速度[6]。
設脈沖F單獨驅(qū)動單軸運動的速度為Vf,合成速度為V。可以畫出V/Vf隨α的變化的曲線圖,如圖7(a)所示。由圖可知,當角度α=45°時,運動速度最快。
設進給脈沖源的頻率為3f,經(jīng)過1/N分頻器分頻后再作為進給脈沖,由此可得新的V/Vf關(guān)系如下:
則這時V/Vf對?琢的曲線圖就變?yōu)槿鐖D7(b)所示。對比圖7(a)、(b),可知其速度穩(wěn)定性有了明顯的提升。
以上分析是插補模塊設計的理論依據(jù),在編寫模塊時需要考慮許多實際問題。但無論是直線插補模塊還是圓弧插補模塊,其實現(xiàn)方式都是通過狀態(tài)機對生成脈沖的程序進行循環(huán),根據(jù)原理推演而得到的判斷條件來產(chǎn)生各軸的驅(qū)動脈沖與相應旋轉(zhuǎn)方向的控制信號[7]。
4 仿真與實驗
4.1 基于Matlab仿真
基于最小偏差法的插補模塊被封裝在FPGA中,但其算法在Matlab環(huán)境下進行了仿真,圖8所示為半徑為8個脈沖當量的運行軌跡,實現(xiàn)了實際軌跡與理想曲線之間的最小偏差。
評論