基于電磁耦合的水下無線能量傳輸系統(tǒng)
隨著科學(xué)技術(shù)的發(fā)展,我國對海洋的科考有了長足的發(fā)展。本文結(jié)合“深海抓斗”、“深海淺鉆”等海洋科考設(shè)備對其供電系統(tǒng)進行改進。目前多數(shù)水下設(shè)備都使用電池供電,也有部分進行電纜傳輸。本文通過對電源系統(tǒng)進行改進,以無電纜連接實現(xiàn)能量傳輸,減少對儀器設(shè)備的束縛,配合水下非接觸式耦合信息傳輸,實現(xiàn)“無線”水下設(shè)備,為海洋科考實驗提供更加優(yōu)越的實驗環(huán)境。同時,無接觸的能量傳輸可以有效地避免因為電源插口外露、電纜拖曳斷裂帶來的安全隱患,提高系統(tǒng)的安全性。
常見的無線能量傳輸方式有三種:電磁感應(yīng)、電磁輻射、電磁諧振。而耦合器主要有兩種形式:導(dǎo)軌形式、柱體形式。本設(shè)計重點闡述利用電磁耦合方式的設(shè)計方法,并提出優(yōu)化策略實現(xiàn)水下的設(shè)備供電。
1 水下無線能量傳輸原理
根據(jù)麥克斯韋方程,變化的電場可以產(chǎn)生磁場,而變化的磁場又可以產(chǎn)生電場。本設(shè)計基于此基本原理,利用電磁耦合器件,實現(xiàn)電—磁—電的轉(zhuǎn)換,其中的磁是在水中傳播。同時針對水中電導(dǎo)率較大的情況進行模型優(yōu)化。
2 系統(tǒng)構(gòu)成
水下無線能量傳輸系統(tǒng)可分為三大部分:高頻逆變和后端的整流電路、控制電路及耦合器。高頻逆變和后端的整流電路可對控制信號進行驅(qū)動放大用以控制逆變電源;控制電路可產(chǎn)生PWM控制信號,同時根據(jù)電路的狀況進行過壓保護處理;耦合器是實現(xiàn)能量水下隔離傳輸?shù)闹攸c,其設(shè)計的好壞對傳輸效率有很大的影響。系統(tǒng)框圖如圖1所示。
2.1高頻逆變電路
本設(shè)計采用的是全橋整流電路實現(xiàn)高頻逆變,全橋逆變效率雖然不高,但實現(xiàn)的逆變功率較大。為此,選用了MOSFET功率器件,能夠在MOS管發(fā)熱損耗較少的情況下,實現(xiàn)大功率的能量傳輸。MOS管的開關(guān)驅(qū)動電路由IR公司的驅(qū)動芯片與門級關(guān)斷鉗位電路組成。IR2110是IR公司推出的帶自舉的低成本驅(qū)動芯片,廣泛應(yīng)用在各種MOS管與IGBT驅(qū)動電路中,上臂自舉能減少所需的驅(qū)動電源數(shù)目。門級關(guān)斷鉗位電路是用兩級MOS管組成反相器。驅(qū)動電路的設(shè)計關(guān)鍵點是選擇自舉電容C1與上拉電阻R23。在Q13關(guān)斷時C1能被快速充電,開通Q14,把Q13的柵源極電壓控制在門級閾值電壓以下,所以C1與R23構(gòu)成的充電電路時間常數(shù)要小,以便實現(xiàn)快速關(guān)斷,減少開關(guān)損耗。在Q13、Q15開通時,Q14始終保持在閾值電壓以下,電容C1通過R23對橋的左邊放電,但Q13、Q15的電平仍然要保持在高電平,所以R23的阻值要大,C1值要小,以減小由D13、R23、Q15構(gòu)成的電路電流和減少自舉電源的功耗。在實際電路中采取犧牲輔助電源的部分功耗,R23選取500 Ω,便能取得一個較好的效果。全橋MOS管驅(qū)動電路如圖2所示。
通過示波器觀察可以看到驅(qū)動電平已沒有常見的下橋干擾毛刺(下臂的驅(qū)動電路同理)。在Q14柵極上的R21、R22、R24、D11構(gòu)成電路對驅(qū)動電壓進行防震蕩處理,D11加快電平下拉。D12、R24在門級鉗位電路中,當(dāng)Q13柵極上有毛刺且超過15 V齊納而被擊穿時,起到保護Q14的效果。同時開關(guān)的13 V電平跳變更加快速,Q值更高,可減少開關(guān)損耗。
2.2 控制電路
本設(shè)計采用STM32F103VBT6為主控芯片。該芯片是ST公司推出的一款基于Cortex-M3內(nèi)核的高性價比ARM處理器,最高主頻可達72 MHz[1];其自帶3通道的互補6路輸出定時器,選用其中2通道與DMA功能一起使用,能有效地實現(xiàn)輸出全橋PWM控制[2],同時其自帶的多通道12位AD可以滿足系統(tǒng)的各種參量的測量需要。
實現(xiàn)過流過壓保護,可在左右臂的下臂接地處串接0.1 Ω的康銅電阻,再用LTV274運放放大其兩端的電壓后,接到STM32的自帶12位AD腳進行電流監(jiān)測。同理對輸入的直流電壓用電阻分壓后接到AD腳。當(dāng)檢測到超過預(yù)設(shè)值(電壓500 V,電流3 A),將關(guān)斷信號發(fā)送給兩片IR2110的DS端,關(guān)斷MOS管,并關(guān)閉輸入電源,直到電壓恢復(fù)到較低的水平(對應(yīng)的電壓10 V,電流0.1 A)后重新開啟系統(tǒng)。
2.3耦合器
耦合器的材料選取常用的變壓器材料有硅鋼、鎳鐵合金、鈷鐵合金、非晶體金屬合金及鐵氧體。考慮到頻率比較高,而且是大功率傳輸,選取鐵氧體磁芯為設(shè)計材料。根據(jù)耦合器能量傳播的特點,要保證磁路是開放對稱的,以有利于能量的傳輸,選取實驗磁芯的外形有PC型、RM型、GU型,同時要考慮磁芯所能承受的最大功率,本文的功率為視在功率,是輸入輸出功率的和,而體積過小的磁芯進行大功率傳輸將面臨磁芯溫升等問題。
其中:D為電壓導(dǎo)通的占空比,實現(xiàn)計算時最大值可取 0.5。代入相關(guān)參數(shù)可知至少需要4股線。
根據(jù)計算所得的模型參數(shù),進行有限元建模分析。有限元分析是一種目前在工程上較為實用的分析方法,其基本的思路就是將原本復(fù)雜的整個模型分解成較為簡單的小區(qū)域,再加上一定的邊界條件限制,即可以求出一些小區(qū)域的解,同時解可與邊上的小區(qū)域共享,最終求得整個模型的近似解。
3 仿真與實驗結(jié)果
圖3所示為GU型磁芯,以及繞線、1/2水下截面的有限元進行區(qū)域劃分后的狀況。其磁導(dǎo)率采用的參考文獻[4-5]的模型,取有球型進行仿真。假設(shè)下端的磁芯為發(fā)射端,上端為接收端。仿真結(jié)果顯示了下端磁芯線圈在200 V、100 kHz電源作用下水中的磁場分布狀態(tài)。在大氣隙情況下,有比例大的磁力線未經(jīng)過次級線圈,所以效率必然較低。至此改變頻率、電壓、氣隙等參數(shù),重新仿真直到最優(yōu)結(jié)果。
圖4所示為輸入電壓對輸出效率和功率的影響,采用的是GU50磁芯,在水中輸入100 V、100 kHz電壓,氣隙為5 mm。
圖5所示為在相同條件下,耦合磁性的電感進行改變后的耦合輸出效率。
圖6所示為系統(tǒng)實物圖,圖中上方是驅(qū)動電路部分。電路工作時,直流電源由PIN進入,經(jīng)過高頻逆變后,輸入至POUT到磁芯。采用PC74磁芯在約2 cm的氣隙下點亮60 W燈泡。
本文論述了基于電磁耦合的水下無線能量傳輸系統(tǒng)的設(shè)計與優(yōu)化方法。針對驅(qū)動電路部分詳細論述了一種實現(xiàn)較高功率的中高頻逆變電路。同時提供了有效的耦合器設(shè)計方法。本系統(tǒng)經(jīng)過水下驗證,實現(xiàn)了最大電壓300 V、最大輸出電流2 A,在5 mm氣隙下實現(xiàn)最大輸出功率為350 W。
評論