挑戰(zhàn)毫微安小電流測量技術(shù)
從Williams的電路中可以看到,即使采用積分技術(shù),要測量毫微安電流仍很困難。這個問題非常困難,因為測量者必須實時完成測量。還有更多復(fù)雜因素,如這種交流測量需要 32 kHz 的帶寬來捕捉示波器電流波形中的大量能量。Williams 用一只傳感器來解決這些問題。Tektronix CT-1 傳感器(參考文獻 2)價格高達(dá) 500 美元,但如果沒有好的傳感器,Williams 就不能從各種噪聲中恢復(fù)出信號。除了有好的靈敏度以外,CT-1 有 50Ω 的輸出阻抗,與高阻抗輸出相比可獲得較低的噪聲信號路徑。本例證明的另一個重要原則是,限制信號路徑的帶寬十分重要。Williams 做了一個窄帶放大器鏈,去除了不感興趣頻率部分帶來的所有噪聲。最后,Williams 在電路中采用了良好的低噪聲設(shè)計原則。將重要節(jié)點架空連接,盡量減少泄漏路徑,而在 50Ω 的源阻抗下,LT1028 可能是所有制造商中提供的噪聲最低的一種放大器。
毫微微安的偏置電流
Paul Grohe 是美國國家半導(dǎo)體公司的一位應(yīng)用工程師,他提供了另一個測量微小電流的出色案例。數(shù)年
前,美國國家半導(dǎo)體公司決定銷售 LMC6001,這是一款保證 25 fA 偏置電流的放大器,這意味著該公司需要測量每只器件的偏置電流來驗證規(guī)格。測試部門無法在計劃階段提供測試設(shè)備,所有電路必須裝到一個標(biāo)準(zhǔn)的探測卡上。Grohe和同事Bob Pease建造了一個用于概念驗證的裝置,以證實解析低達(dá)1fA小型測試電路的可行性(圖4)。很多書籍與討論中都采用一只積分電容器來測量小電流(參考文獻3)。它的原理是,一個小電流可以為一只小電容器充電,你可以讀出電壓值來推算電流。在某些情況下,電流是來自傳感器的外部電流。此時,電流正離開放大器的輸入腳。圖 5 是一個簡單的原理電路,其中的放大器正在測量自己的偏置電流。
測量小電流的現(xiàn)實情況遠(yuǎn)遠(yuǎn)超過圖中所表述的內(nèi)容。首先,Grohe 不能用器件本身測量自己的偏置電流。如果他嘗試將器件自身用作積分器,則無法校正一個插座的效應(yīng),以及與測試裝置有關(guān)的其它泄漏。要做到這一點,需要一個單獨的低偏置電流器件作積分器(圖 6)。用一只 CMOS 的 LMC660 放大器即可保證偏置電流小于 2 fA。Grohe 用這種技術(shù)可以簡單地去除任何 DUT(待測器件),而積分器就可以測量自己的偏置電流,以及測試插座和安裝積分器的PCB的泄漏電流。
圖7表明,Grohe并未將DUT插入插座內(nèi),所有管腳均未與PCB接觸。為盡量減小泄漏,Grohe只將兩只電源腳作為長而獨立的插座,而且并未安裝在PCB上。同樣,他將待測管腳連接到一個插座和一個2英寸懸置線上,并將管腳/插座組合連接到積分放大器的輸入端。為防止DUT運行在開環(huán)狀態(tài),Grohe將兩個插座焊在一起,將空中懸浮的輸出腳橋接起來。空氣的流動會帶來充電的離子,造成虛假讀數(shù),因此Grohe將整個 DUT 封裝在一個屏蔽的覆銅盒內(nèi)。
下一個問題是選擇一個積分電容器。開始時,Grohe 感覺最佳的電容器選擇可能是空氣介質(zhì)電容器,因此他做了兩塊尺寸為4英寸×5英寸的大平板,用作積分電容器。這個電容器的尺寸正好是安裝 DUT 的第二個覆銅盒的大小。采用大電容器被證明是一個壞主意。大面積區(qū)域為宇宙射線提供了一個大目標(biāo),產(chǎn)生出能影響測量的離子電荷(圖 8)。Grohe 接下來盡量減小了電容器的尺寸,同時仍然使用一種良好的電介質(zhì)。他偶然發(fā)現(xiàn) RG188 同軸電纜使用了 Teflon 絕緣層。2 英寸長的這種電纜可為積分電容器提供10 pF 的電容(圖 9)。另外它還有一個好處,外層的編織帶可以作為屏蔽。于是,Grohe 將其連接到放大器的低阻抗輸出端。換用這種電容器后,宇宙射線的密度只有每30秒左右一次。Grohe做15秒的積分測量,通過五次測量來消除射線的影響。后來,Grohe拋棄了單次測量。任何離子輻射源(包括有鐳刻度盤的老式手表)都會帶來射線輻射問題。注意Grohe將放大器的輸入端撬起,以避免PCB的泄漏。
在測量前,你需要將積分電容器復(fù)位為零。用半導(dǎo)體開關(guān)是不現(xiàn)實的,因為多數(shù)模擬開關(guān)都會帶來泄漏電流和5pF ~ 20pF的電容。電容也會有變?nèi)菪?yīng),容值隨施加的電壓而變化,使測量更加復(fù)雜化。為盡量減少這些問題,Grohe使用了一只Coto簧片繼電器。他知道在繼電器打開時,線圈可能與內(nèi)部簧片耦合,于是他規(guī)定使用有靜電屏蔽的繼電器。但結(jié)果讓他沮喪,當(dāng)繼電器由于電荷注入而打開時,測量中仍然有大的跳躍。你也可以將一只簧片繼電器看作一個變壓器,簧片組件可看作一個單匝繞組。這種現(xiàn)象表明,用靜電屏蔽防止干擾是失敗的,磁場在電路高阻抗端產(chǎn)生的電壓造成了電荷注入。繼電器沒有立即打開,需要為線圈充電的脈沖在繼電器打開前的瞬間產(chǎn)生一個相當(dāng)大的電流注入。Grohe確定了使繼電器工作所需的最小絕對電壓擺幅,盡可能地減少了這種問題。這樣,繼電器將會以3.2V拉入,而以2.7V釋放。他在一只 LM317 可調(diào)穩(wěn)壓器上使用一組電阻分接頭,以控制這兩個值之間的輸出。他選擇不用全部5V為繼電器供能,從而減少了積分器輸出的跳躍,使之可以重復(fù)。然后,通過為第二級增益放大器注入一個小電流來消除跳躍。
評論