<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > 設(shè)計(jì)應(yīng)用 > 未來手機(jī)RF前端設(shè)計(jì)挑戰(zhàn)

          未來手機(jī)RF前端設(shè)計(jì)挑戰(zhàn)

          作者: 時(shí)間:2012-05-21 來源:網(wǎng)絡(luò) 收藏

           在過去十年中,經(jīng)歷了巨大的變革。面世伊始僅供人們通話和收發(fā)短信的,現(xiàn)在已經(jīng)轉(zhuǎn)變?yōu)槎喙δ苁殖衷O(shè)備,融電話、Web瀏覽器、短信工具、照相機(jī)、游戲機(jī)、MP3播放器和很多實(shí)用功能于一體,能夠滿足人們的移動(dòng)信息需求。

          本文引用地址:http://www.ex-cimer.com/article/260173.htm

            此外,當(dāng)前的用戶不僅需要這些功能,而且還要求能夠隨時(shí)隨地使用這些功能。這種移動(dòng)技術(shù)需要兼容多個(gè)頻段和多種調(diào)制標(biāo)準(zhǔn)。由于功能復(fù)雜,且消費(fèi)者喜愛小巧機(jī)型,設(shè)計(jì)人員因此面臨強(qiáng)大壓力,必須以更低的物料清單(BOM)成本和創(chuàng)記錄的交付時(shí)間來提供產(chǎn)品,才能滿足市場對(duì)于產(chǎn)品不斷推陳出新的期望。

            如此嚴(yán)格的要求促使設(shè)計(jì)人員改變了對(duì)的評(píng)估測試方式。本文將討論上述需求對(duì)于設(shè)計(jì)的影響,以及如何利用新方法來增強(qiáng)多功能手機(jī)的用戶體驗(yàn)。

            已涉足此行業(yè)數(shù)年的設(shè)計(jì)工程師可能還記得,幾年前,語音是決定產(chǎn)品性能的關(guān)鍵因素,最常使用的調(diào)制格式是GSM/GPRS,手機(jī)的外形較大,部分所占用的印刷電路板(PCB)面積也較多,性能是關(guān)注的焦點(diǎn)。

            
          位于手機(jī)外部

            位于手機(jī)外部(如圖1所示),采用短截線或能夠拉出收回的滑動(dòng)型天線,其效率遠(yuǎn)優(yōu)于當(dāng)前手機(jī)中的天線。這類手機(jī)僅支持純語音呼叫,用戶要將手機(jī)拿至貼近頭部的位置。因此,天線的設(shè)計(jì)是在相對(duì)了解的環(huán)境中進(jìn)行的,能夠?qū)崿F(xiàn)設(shè)計(jì)的優(yōu)化。

            直至今天,這依然很重要,因?yàn)楣β史糯笃?)對(duì)于通話時(shí)間影響很大,而這直接關(guān)系到使用某種型號(hào)或某個(gè)品牌手機(jī)時(shí)的用戶體驗(yàn)。如果設(shè)計(jì)人員能夠優(yōu)化手機(jī)在實(shí)際使用環(huán)境中的電流消耗,那么該產(chǎn)品在消費(fèi)者市場中會(huì)占據(jù)更有力的競爭地位。天線及其實(shí)際性能間的一致性使得手機(jī)設(shè)計(jì)人員能夠通過天線與的阻抗匹配靈活地優(yōu)化設(shè)計(jì),以便盡可能高效地提供最高功率。

            手機(jī)設(shè)計(jì)今非昔比

            時(shí)光荏苒,手機(jī)市場發(fā)生了巨變。現(xiàn)在的關(guān)注焦點(diǎn)是應(yīng)用處理器和組件,專注于軟件應(yīng)用勝過提升用戶體驗(yàn)。目前,手機(jī)外形更為小巧,但在很多情況下,為了實(shí)現(xiàn)這些獨(dú)特外形,不得不在一定程度上犧牲性能。現(xiàn)在的手機(jī)采用的是貼片天線或平面倒F天線(PIFA)(參見圖2),多數(shù)情況下它們的效率低于過去的天線。

            
          現(xiàn)在的手機(jī)采用的是貼片天線或平面倒F天線

            不過,為了解決設(shè)計(jì)人員面臨的難題,一些手機(jī)轉(zhuǎn)而采用過去的短截線天線。這種性能與外形尺寸間的取舍,會(huì)直接影響電池壽命、通話時(shí)間和網(wǎng)絡(luò)可用性方面的用戶體驗(yàn),因?yàn)樘炀€選擇及其使用環(huán)境會(huì)影響的工作。

            例如,電壓駐波比(VSWR)就體現(xiàn)了這是如何影響PA的。當(dāng)前的手機(jī)工作在三種基本配置下。一種是用戶按傳統(tǒng)方式將手機(jī)貼在頭部附近通話,或者置于頭部前方,使用揚(yáng)聲器通話,還有一種情況是手機(jī)并沒有握在手里,而是與用戶有一定的距離。

            天線的VSWR性能差別很大,這只是其中的三種主要場景,實(shí)際上,由于手指和手掌的位置不同,存在很多種使用狀況,但為簡單起見,本文僅討論以上三種情況。有關(guān)天線VSWR性能的差別請(qǐng)參見圖3。

            
          天線的VSWR性能

            圖3:手機(jī)中PIFA天線的VSWR性能。

            這些頻率響應(yīng)說明了在當(dāng)前新一代手機(jī)中,PA面臨的不同VSWR要求。對(duì)于這類手機(jī),在頻段邊緣,PA對(duì)應(yīng)的VSWR范圍為5:1到2:1。VSWR性能還會(huì)影響接收靈敏度。許多手機(jī)設(shè)計(jì)人員涌來評(píng)估的通常做法是,在50歐姆實(shí)驗(yàn)室環(huán)境中測量性能。

            實(shí)際上,這種方法對(duì)于今天的設(shè)計(jì)已不再適用,因?yàn)镻A所面對(duì)的阻抗是不可預(yù)測的。設(shè)計(jì)人員要優(yōu)化解決方案,以為終端用戶提供最佳通話時(shí)間,就必須著手在不同的VSWR條件下檢測RF前端。

            諸如3GPP等標(biāo)準(zhǔn)委員會(huì)制定了空中測試(OTA)要求。一般來說,這些要求要比運(yùn)營商的要寬松得多,因?yàn)楹笳咝枰鼑?yán)格的OTA性能。運(yùn)營商為其手機(jī)設(shè)置的典型值為傳導(dǎo)RF輸出功率-11dB。

            根據(jù)GSM850標(biāo)準(zhǔn),這相當(dāng)于22dBmOTA要求,因?yàn)閭鲗?dǎo)輸出功率要求設(shè)置為33dBm,而天線效率和傳播效果隨頻率不同,會(huì)有-11dB的損耗。如果RF前端都按照這些要求進(jìn)行評(píng)估和對(duì)比,這些OTA要求就能直接應(yīng)用于50歐姆系統(tǒng)。
          GSM功率控制架構(gòu)對(duì)通話時(shí)間的影響

            當(dāng)前行業(yè)中GSM手機(jī)采用最廣泛的三種架構(gòu)分別是電流控制、電壓控制和功率檢測。圖4、圖5和圖6分別給出了這三種架構(gòu)的簡化框圖。

            
          電流控制

            圖4:電流控制模塊圖。

            圖4中的電流控制架構(gòu)是一種間接控制的方案,它監(jiān)控電流并使其保持恒定。這種方法將電流與功率相關(guān)聯(lián),只要電流與功率之間的關(guān)系保持恒定(僅當(dāng)負(fù)載電阻不變時(shí)),就能非常出色地控制功率??刂乒β实姆椒ㄊ牵和ㄟ^調(diào)整放大器的基級(jí)偏壓來控制增益,進(jìn)而實(shí)現(xiàn)功率控制。

            
          電流控制

            圖5:電壓控制模塊圖。

            圖5為電壓控制示意圖,它與電流控制類似,也是一種間接控制方法,只是將電壓而非電流與功率相關(guān)聯(lián)。這種方法非常類似電流控制,只要負(fù)載電阻恒定且電壓和功率間的關(guān)系保持不變,就能工作良好。與電流控制相似,在電壓控制中,通過調(diào)節(jié)集電極電壓而非基級(jí)偏壓來控制功率。

            
          功率檢測

            圖6:功率檢測模塊圖。

            本文中介紹的最后一個(gè)架構(gòu)是功率檢測(如圖6所示)。這種方法將一部分信號(hào)耦合回檢波器,檢波器通過比較輸出電壓和參考電壓來檢測功率。這種功率控制方法的準(zhǔn)確性也很高,失配主要取決于耦合器的方向和反饋回路中的誤差。該架構(gòu)的缺點(diǎn)是,增加了耦合器的輸出損耗和組件成本,因?yàn)樗枰嚯娐穪韺?shí)現(xiàn)功率控制功能。

            在非常簡短地回顧了基本功率控制架構(gòu)后,下面重點(diǎn)介紹器件的評(píng)估測試,采用的是能夠反映實(shí)際性能,并直接影響通話時(shí)間、電池壽命和呼叫接收效果等用戶滿意度指標(biāo)的方式。首先,為了解實(shí)際環(huán)境,必須描述天線性能(如圖3所示)。

            正像前面所述,VSWR的變化范圍在2:1到5:1之間,具體取決于終端用戶和手機(jī)的位置。綜合這些考量因素,用于對(duì)比的基準(zhǔn)定為3:1VSWR。選擇該值的原因是因?yàn)樗芎芎玫伢w現(xiàn)實(shí)際環(huán)境中的性能,而不會(huì)有不切實(shí)際的功率反射回PA,從而導(dǎo)致比較結(jié)果有誤差。為正確描述這些產(chǎn)品,必須進(jìn)行負(fù)載牽引測試,用這種方法設(shè)計(jì)人員可以精確控制失配、相角和輸出功率精確度。該方法如圖7所示。

            
          負(fù)牽引的設(shè)置

            圖7:負(fù)載牽引的設(shè)置。

            通過圖8和圖9可以看出,即使采用不同架構(gòu)實(shí)現(xiàn)了功率控制功能,在實(shí)際環(huán)境中的性能還是有可能出現(xiàn)很大差異。這意味著什么?為什么很重要?首先,如前所述,OTA性能是真正的關(guān)鍵,它與輸出功率直接相關(guān)。

            

            如圖9所示,在這三種維持到負(fù)載的恒定輸出功率的方法中,電流控制是表現(xiàn)最差的一種。在GSM850頻段,電流控制和功率檢測方法有大概1.5dB的差異。功率檢測機(jī)制的缺陷在于允許電流增加,而其它解決方案中的電流維持在合理值。盡管這種情況下看起來通話時(shí)間會(huì)較長,但實(shí)際環(huán)境中并非如此。

            例如,如果手機(jī)工作在29dBm(這是GSM系統(tǒng)中最常見的功率值),基站實(shí)際上會(huì)要求手機(jī)將功率值從29dBm提高到31dBm,因?yàn)檩敵龉β薀o法滿足當(dāng)前功率控制電平(PCL)。這反過來會(huì)增加電流消耗,最終縮短通話時(shí)間。另一個(gè)需考慮的則是電流消耗所取得的優(yōu)勢(shì)。
          在手機(jī)中,如果電流控制機(jī)制在這些情況下提供了足夠輸出功率,能夠滿足運(yùn)營商的OTA要求,則無須擔(dān)心進(jìn)入VSWR的功率。由于出色地降低了輸出功率,因此提供一種VSWR性能較好的解決方案就能夠大幅節(jié)省電流消耗。在查看圖10時(shí),請(qǐng)考慮以下問題:如果所有解決方案交付的功率均相同,那么它們會(huì)對(duì)終端用戶有何影響?

            

            對(duì)于電壓控制和功率檢測方法而言,可將50歐姆校準(zhǔn)設(shè)置為降低1dB,但仍滿足相同的輸出功率要求。ETSI傳導(dǎo)規(guī)范指定,對(duì)于PCL5,正常情況下的功率為33dBm±2dB。這意味著為達(dá)到傳導(dǎo)性能,針對(duì)PCL5,手機(jī)必須至少輸出31dBm??紤]到留出余量的需求,最安全的校準(zhǔn)值應(yīng)為31.5dBm。如果需要更大的余量,則設(shè)計(jì)人員可將手機(jī)調(diào)相至50歐姆環(huán)境中為32dBm,從而大幅節(jié)約電流。圖11中詳細(xì)介紹了與50歐姆環(huán)境下性能的關(guān)聯(lián)問題。

            
          與50歐姆環(huán)境下性能的關(guān)聯(lián)問題

            在圖11中,對(duì)這三個(gè)解決方案的電流與輸出功率進(jìn)行了的對(duì)比。這證明了如果設(shè)計(jì)人員要實(shí)現(xiàn)相同的輸出功率以滿足OTA需求,那么電流控制方案中的輸出功率就需要調(diào)整為33dBm,功率檢測方案的輸出功率與之相比要小1dB。最終的結(jié)果是在滿功率工作時(shí),50歐姆環(huán)境下可節(jié)省180mA電流,從而延長電池壽命和通話時(shí)間。

            在節(jié)省電流的同時(shí),并未犧牲任何實(shí)際輸出功率OTA性能。降低調(diào)相目標(biāo)的另一優(yōu)勢(shì)是,降低了吸收率(SAR),且減少了諧波的生成,因?yàn)樵跐M功率1dB回退點(diǎn),諧波能量要低很多。這減輕了輻射問題,并能加快產(chǎn)品面市速度。

            如果設(shè)計(jì)人員對(duì)該方法不感興趣,而希望提高輸出功率,那么可通過使用VSWR容差性能更優(yōu)的器件來實(shí)現(xiàn)。但提高輸出功率后,每個(gè)設(shè)計(jì)人員都面臨著多時(shí)隙GPRS情形下輻射能量無法達(dá)到SAR要求的可能性。而設(shè)計(jì)更優(yōu)的、VSWR容差性能良好的器件通過限制低阻抗?fàn)顟B(tài)下的輸出功率,使手機(jī)工作在較高功率水平時(shí)仍能滿足SAR要求(參見圖12)。

            
          優(yōu)化OTA性能

            圖12說明,如果手機(jī)設(shè)計(jì)人員希望優(yōu)化OTA性能,那么電壓控制和功率檢測解決方案與電流控制解決方案相比,其調(diào)相目標(biāo)要高出0.5到0.75dB。從統(tǒng)計(jì)角度看,較高的調(diào)相目標(biāo)會(huì)降低SAR性能。但由圖12我們可以看到,這三種解決方案的峰值功率擺幅是相同的,而50歐姆環(huán)境下設(shè)定的功率要高于電流控制方案的功率。這使得設(shè)計(jì)人員能夠開發(fā)出在運(yùn)營商要求的OTA性能方面比競爭對(duì)手更為優(yōu)秀的產(chǎn)品。

            最后需要考慮的是發(fā)射(TX)和接收(RX)性能間的平衡,以及是否能根據(jù)不同地區(qū)定制性能。從圖3,即手機(jī)天線VSWR性能示意圖中可以看出,如果需要的話,可以通過調(diào)諧來為提高RX性能而降低TX性能。圖中的紫色軌跡表示手機(jī)放在頭部附近的傳統(tǒng)通話方式,在提高頻率時(shí),GSM850TX和RX性能會(huì)略有降低,而GSM900RXVSWR則會(huì)有所改善。如果TX通路VSWR容差性能良好,設(shè)計(jì)人員就能根據(jù)其具體設(shè)計(jì)中的側(cè)重點(diǎn),靈活地權(quán)衡參數(shù)。

            總之,失配情況下評(píng)估方案的重要性必須得到重視。這為設(shè)計(jì)人員打開了新思路,他們能以前所未有的方式進(jìn)行系統(tǒng)級(jí)性能權(quán)衡。如果只是根據(jù)50歐姆實(shí)驗(yàn)室測試來檢測解決方案,可能會(huì)導(dǎo)致無法正確選擇合適的設(shè)計(jì)架構(gòu)。

            由圖10可知,這三種解決方案都能執(zhí)行相應(yīng)功能,且性能非常相似。雖然在50歐姆環(huán)境中確實(shí)如此,但實(shí)際應(yīng)用卻有很大不同。關(guān)注OTA性能可使設(shè)計(jì)者更為靈活地定制產(chǎn)品,以實(shí)現(xiàn)更優(yōu)的功耗、OTA功率或RX性能。

            為此,設(shè)計(jì)人員應(yīng)開放思路,采用新方法來進(jìn)行RF前端評(píng)估,并作出真正能夠影響用戶滿意度的決策,如降低呼損率,延長電池壽命等。隨著終端客戶的使用體驗(yàn)的改進(jìn),手機(jī)的品牌形象也會(huì)大幅提升,最終提高消費(fèi)者需求量和運(yùn)營商的采用率。

          pa相關(guān)文章:pa是什么




          關(guān)鍵詞: 天線 手機(jī) RF前端 PA LNA

          評(píng)論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();