<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 手機(jī)與無(wú)線通信 > 設(shè)計(jì)應(yīng)用 > 基于CMOS工藝的RF集成電路設(shè)計(jì)

          基于CMOS工藝的RF集成電路設(shè)計(jì)

          作者: 時(shí)間:2012-05-23 來(lái)源:網(wǎng)絡(luò) 收藏

            合成器

            本地振蕩器負(fù)責(zé)在上變頻和下變頻器中進(jìn)行正確的頻率選擇。由于目前的無(wú)線通信系統(tǒng)必須盡可能高效地利用頻譜,因此信道總是排列得非常緊密。接收信道的期望信號(hào)電平可能非常小,而相鄰的信道則可能具有非常大的信號(hào)電平,因此LO信號(hào)的相位噪聲指標(biāo)將非常高,因而頻率合成器的設(shè)計(jì)非常關(guān)鍵。

            同時(shí),移動(dòng)通信還要求器件的功耗低、成本低和重量輕。完全的合成器將能滿(mǎn)足這些要求,而完全意味著采用標(biāo)準(zhǔn)的技術(shù),并無(wú)需增加任何外部器件或流程。通常,LO通過(guò)如圖3所示的鎖相環(huán)實(shí)現(xiàn)。其中壓控振蕩器和雙模數(shù)預(yù)分頻器(DMP)的設(shè)計(jì)必須滿(mǎn)足嚴(yán)格的指標(biāo)。

            在以亞微米技術(shù)實(shí)現(xiàn)GHz VCO過(guò)程中,可有兩種選擇方案:環(huán)形振蕩器或LC振蕩回路諧振頻率的振蕩器。在該LC振蕩回路中的電感器可以用有源電感或無(wú)源電感方式實(shí)現(xiàn)。研究表明,環(huán)形振蕩器和有源LC振蕩器的相位噪聲與功耗成反比:

            

            因此,對(duì)于低功率、低相位噪聲的VCO,唯一的可行解決方案就是帶無(wú)源電感的LC振蕩器。在此條件下,相位噪聲將與功耗成正比:

            

            該振蕩器唯一的缺點(diǎn)就是的無(wú)源電感。等式(2)表明,對(duì)于較低的相位噪聲,即LC環(huán)路的等效串聯(lián)阻抗R必須盡可能小。較低的阻抗也意味著較低的電路損耗,只需較低的功率即可補(bǔ)償這些損耗。在大多數(shù)技術(shù)中,電容可以輕易獲得,但由于阻抗R通常由電感的串聯(lián)阻抗決定,因此電感的設(shè)計(jì)就尤為重要。電感的設(shè)計(jì)目前存在3種解決方案。

            硅基底上的螺旋電感通常要承擔(dān)由于基底而產(chǎn)生的大量損耗,這限制了可獲取的Q值大小。最近,新開(kāi)發(fā)的技術(shù)在后處理過(guò)程中能將螺旋線圈之下的基底蝕刻掉。但是,由于在IC的正常之后需要引入額外的蝕刻過(guò)程,該技術(shù)并不適用于大規(guī)模生產(chǎn)。

            為滿(mǎn)足極低的相位噪聲要求,需要對(duì)邦定線電感進(jìn)行深入研究。由于邦定線的寄生感應(yīng)系數(shù)約為1nH/mm,且串聯(lián)阻抗極低,因此可以得到Q值很高的電感。IC技術(shù)總離不開(kāi)邦定線,因此邦定線完全可被視為標(biāo)準(zhǔn)的技術(shù)的一部分。由4條接合線形成兩個(gè)電感可與增強(qiáng)的LC振蕩回路一起,實(shí)現(xiàn)噪聲和功率的有效折衷。對(duì)于1.8GHz的載波,當(dāng)頻率偏移量為200kHz時(shí),測(cè)量的相位噪聲可低至-115dBc/Hz。在電源電壓為3V時(shí),功耗僅為 24mW。但是,由于這種實(shí)現(xiàn)方案的性能并不能滿(mǎn)足批量生產(chǎn)要求,因此業(yè)界很少采用這種解決方案。

            最佳的解決方案是不做任何調(diào)整,直接在標(biāo)準(zhǔn)硅基底上采用螺旋線圈。當(dāng)采用雙極實(shí)現(xiàn)時(shí),將不會(huì)產(chǎn)生基底損耗,因?yàn)檫@種實(shí)現(xiàn)方法中,基底通常具有很高的阻值。大多數(shù)亞微米CMOS技術(shù)均采用高度摻雜的基底,因而基底具有很大的感應(yīng)電流,這是導(dǎo)致高損耗的根源。通過(guò)有限元仿真研究這些低阻值基底的作用效果,這種分析在螺旋電感LC振蕩器應(yīng)用中,有助于得到優(yōu)化的線圈設(shè)計(jì)。這種方案只有兩層金屬層可用,基底采用了高度摻雜工藝,產(chǎn)生的功耗僅為 6mW,對(duì)于1.8GHz的載波,當(dāng)頻率偏移量為600kHz時(shí),可獲得-116dBc/Hz的相位噪聲。

            

            為設(shè)計(jì)高速雙模數(shù)預(yù)分頻器,目前業(yè)界已經(jīng)開(kāi)發(fā)出了可M/S觸發(fā)器主輸出和從輸出之間90°的相位關(guān)系的新架構(gòu)。該架構(gòu)如圖5所示。采用該架構(gòu),在24mW功耗和一個(gè)3V電源條件下,可以得到1.75GHz的輸入頻率,甚至還可以利用5V的電源得到2.5GHz的輸入頻率。

            完全集成的VCO和雙模數(shù)預(yù)分頻器無(wú)需調(diào)整或后處理,即可在標(biāo)準(zhǔn)的CMOS工藝上集成完整的LO合成器,并符合現(xiàn)代通信規(guī)范。

             CMOS上變頻器

            到目前為止,公開(kāi)發(fā)表的文章中提及的大多是CMOS下變頻混頻器。直到最近,業(yè)界才提出了CMOS上變頻器。在傳統(tǒng)的雙極收發(fā)器實(shí)現(xiàn)中,上變頻和下變頻混頻器通常采用相同的四象限拓?fù)浣Y(jié)構(gòu)。但上變頻和下變頻器之間也存在一些本質(zhì)的區(qū)別,通過(guò)研究這些區(qū)別可以?xún)?yōu)化專(zhuān)用混頻器拓?fù)浣Y(jié)構(gòu)。

            在下變頻器拓?fù)浣Y(jié)構(gòu)中,兩條輸入信號(hào)都是高頻信號(hào),如GSM系統(tǒng)中的900MHz信號(hào)。而對(duì)于低中頻或零中頻接收器系統(tǒng),輸出信號(hào)則是最大為若干兆赫茲的低頻信號(hào)。

            上行變頻混頻器的設(shè)計(jì)則完全不同,高頻本地振蕩器和低頻基帶(BB)輸入信號(hào)經(jīng)過(guò)相乘,形成高頻輸出信號(hào)。所有這些進(jìn)一步的信號(hào)處理必須在高頻下進(jìn)行,但當(dāng)采用當(dāng)前的深亞微米CMOS工藝時(shí)將相當(dāng)困難,并將消耗很大的功率。此外,所有噪聲信號(hào),如交調(diào)分量和LO泄漏信號(hào)都必須低于期望信號(hào)電平,例如低于-30 dB的信號(hào)電平。

            很多已公開(kāi)CMOS的混頻器拓?fù)浣Y(jié)構(gòu)均傳統(tǒng)的具有交叉聯(lián)結(jié)差動(dòng)調(diào)節(jié)級(jí)的可變跨導(dǎo)倍頻器。由于傳統(tǒng)的雙極??叉聯(lián)結(jié)差動(dòng)調(diào)節(jié)級(jí)又基于雙極性晶體管的線性跨導(dǎo)(translinear)特性構(gòu)建,因此與之相對(duì)應(yīng)的MOS器件只能在調(diào)制器或開(kāi)關(guān)模式下有效地使用。較大的LO信號(hào)必須用來(lái)獲得門(mén)限,這將導(dǎo)致極大的LO饋通(feedthrough)。在CMOS下變頻器中,這已經(jīng)成為一個(gè)難題。例如,對(duì)于-30dBm的饋通信號(hào),LO輸出信號(hào)的電平為-23dBm,這表明抑制的信號(hào)電平僅為-7dB。這將導(dǎo)致直接上變頻拓?fù)浣Y(jié)構(gòu)出現(xiàn)非常嚴(yán)重的問(wèn)題,而且通過(guò)對(duì)LO信號(hào)進(jìn)行方波調(diào)制,第三階諧波將具有30%的信號(hào)功率。噪聲信號(hào)將只能通過(guò)附加的外部輸出濾波器進(jìn)行濾波。

            上述問(wèn)題可以通過(guò)在CMOS中對(duì)偏離線性區(qū)域的MOS混合晶體管中的電流進(jìn)行線性調(diào)制加以解決。對(duì)于柵極電壓V1+vin1、漏電壓V2+vin2/2以及源電壓V2-vin2/2,通過(guò)晶體管的電流可由下式計(jì)算:

            

            當(dāng)LO信號(hào)連接到柵極,基帶信號(hào)連接到vin2時(shí),由于等式(3)的第一項(xiàng),電流將包含LO附近的頻率分量;根據(jù)等式3第二項(xiàng)可知,電流還包含基帶信號(hào)分量。根據(jù)上面的原理,可以得到采用標(biāo)準(zhǔn)CMOS技術(shù)的 1GHz上變頻器。

            所有不期望的測(cè)量信號(hào)均低于-30dBc。如果采用500Ω的片上負(fù)載,那么對(duì)于0dBm的LO信號(hào)就可實(shí)現(xiàn)-10dB轉(zhuǎn)換增益。然而,傳統(tǒng)的構(gòu)件內(nèi)聯(lián)采用了50Ω的特性阻抗,這意味著CMOS發(fā)送器功能需要額外的功率預(yù)放大器,以得到外部高效率功率放大器組件的輸入阻抗。對(duì)于現(xiàn)有的亞微米技術(shù)而言,預(yù)放大器構(gòu)件仍是一個(gè)嚴(yán)重問(wèn)題。用以實(shí)現(xiàn)900MHz完全集成收發(fā)器的典型雙極性技術(shù)具有20GHz的截止頻率。由于目前在高頻應(yīng)用中采用的亞微米技術(shù)具有較低的gm/I比率,因此CMOS預(yù)放大器的功耗將比雙極性技術(shù)高至少20倍。然而,得益于CMOS技術(shù)的快速下行縮放,現(xiàn)有的CMOS 構(gòu)件實(shí)現(xiàn)表明,帶有可接受功耗的整體CMOS收發(fā)器完全適用于極深亞微米CMOS。

            本文結(jié)論

            幾個(gè)深亞微米技術(shù)研究組正致力于研究在電路實(shí)現(xiàn)CMOS技術(shù)的可能性。尤其是在新的接收器拓?fù)浣Y(jié)構(gòu)(如寬帶中頻和低中頻拓?fù)浣Y(jié)構(gòu))開(kāi)發(fā)中,該技術(shù)與高線性下變頻器相結(jié)合,無(wú)需添加外部濾波器或其它器件,就能為完全集成的下變頻器開(kāi)發(fā)鋪平道路。

            然而,由于現(xiàn)有亞微米技術(shù)的適中速度性能,必須設(shè)計(jì)出低噪聲低功耗的電路。只要短信道效應(yīng)不限制線性度和互調(diào)性能,深亞微米技術(shù)的發(fā)展將有助于實(shí)現(xiàn)這些目標(biāo)。

            性能低相位噪聲、低功耗、完全集成的VCO電路已出現(xiàn)在CMOS中。雖然開(kāi)始時(shí)遇到一些困難,但后處理技術(shù)通過(guò)將電感用作接合線,推動(dòng)了標(biāo)準(zhǔn)CMOS技術(shù)的應(yīng)用?,F(xiàn)在,甚至已經(jīng)出現(xiàn)了帶有優(yōu)化的集成螺旋電感的低相位噪聲性能標(biāo)準(zhǔn)CMOS技術(shù),而且無(wú)需任何后處理或?qū)ν獠科骷M(jìn)行調(diào)整。這推動(dòng)了完全集成的收發(fā)器電路的發(fā)展。

            然而,由于通信系統(tǒng)通常是雙向系統(tǒng),因而也需要發(fā)送器電路。直到最近,具有適中輸出功率的CMOS上行轉(zhuǎn)換器才出現(xiàn)在公開(kāi)發(fā)表的文章中。同樣得益于深亞微米技術(shù)的發(fā)展,今后將有望實(shí)現(xiàn)具有可接受功耗的完全集成CMOS發(fā)送器電路。這推動(dòng)了采用標(biāo)準(zhǔn)CMOS技術(shù)的完全集成收發(fā)器電路的發(fā)展。


          上一頁(yè) 1 2 下一頁(yè)

          評(píng)論


          相關(guān)推薦

          技術(shù)專(zhuān)區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();