基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器及仿真
3.神經(jīng)網(wǎng)絡(luò)PID控制器及控制算法
1、BP神經(jīng)網(wǎng)絡(luò)PID控制器結(jié)構(gòu)如下圖所示:本文引用地址:http://www.ex-cimer.com/article/163083.htm
圖2 神經(jīng)網(wǎng)絡(luò)控制器結(jié)構(gòu)圖
由圖可知:控制器由兩部分組成,分別為常規(guī)PID控制和神經(jīng)網(wǎng)絡(luò),其中,常規(guī)PID直接對(duì)被控對(duì)象進(jìn)行閉環(huán)控制,并且其控制參數(shù)Kp、Ki、Kd為在線調(diào)整方式;神經(jīng)網(wǎng)絡(luò),根據(jù)系統(tǒng)的運(yùn)行狀態(tài),調(diào)節(jié)PID控制器的參數(shù),以期達(dá)到某種性能指標(biāo)的最優(yōu)化,使輸出層神經(jīng)元的輸出對(duì)應(yīng)于PID控制器的三個(gè)可調(diào)參數(shù)。通過(guò)神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)、加權(quán)系數(shù)的調(diào)整,使神經(jīng)網(wǎng)絡(luò)輸出對(duì)應(yīng)于某種最優(yōu)控制規(guī)律下的PID控制器參數(shù)。
2、控制算法
神經(jīng)網(wǎng)絡(luò)PID的控制算法[5]如下:
(1). 確定神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),即確定輸入節(jié)點(diǎn)數(shù)和隱含層節(jié)點(diǎn)數(shù),并給出各層加權(quán)系數(shù)的初值和,并選定學(xué)習(xí)速率 和慣性系數(shù) ,令k =1;
(2). 采樣得到r(k)和y(k),計(jì)算當(dāng)前時(shí)刻誤差error(k)= r(k)-y(k);
(3). 計(jì)算各神經(jīng)網(wǎng)絡(luò)的輸入、輸出,其輸出層的輸出即為PID控制器的三個(gè)控制參數(shù)Kp、Ki、Kd;
(4). 計(jì)算 PID控制器的輸出;
(5). 進(jìn)行神經(jīng)網(wǎng)絡(luò)學(xué)習(xí),在線調(diào)整加權(quán)系數(shù),實(shí)現(xiàn) PID控制參數(shù)的自適應(yīng)調(diào)整;
(6). 令k=k+1,返回第(1)步。
4.仿真實(shí)例
4.1被控對(duì)象
設(shè)被控對(duì)象的近似數(shù)學(xué)模型為:,所選的輸入信號(hào)為一時(shí)變信號(hào):
神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)選擇4-5-3,學(xué)習(xí)速率為0.55,慣性系數(shù)為0.04,加權(quán)系數(shù)初始值為區(qū)間[-0.5,0.5]上的隨機(jī)數(shù),采樣頻率為1000Hz。
Matlab仿真結(jié)果如圖三所示:
圖3-1 輸入輸出曲線
圖3-2 誤差曲線
4.2 仿真結(jié)果分析
由仿真曲線可以看出,神經(jīng)網(wǎng)絡(luò)PID穩(wěn)態(tài)誤差小,解決了常規(guī)PID超調(diào),抖動(dòng)等問(wèn)題,控制精度高,實(shí)現(xiàn)了對(duì)控制信號(hào)幾乎相同的跟蹤,具有較好的快速性和適應(yīng)性。
5. 結(jié)語(yǔ)
神經(jīng)網(wǎng)絡(luò)PID控制器實(shí)現(xiàn)了兩種算法本質(zhì)的結(jié)合,借助于神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí),自組織能力,可實(shí)現(xiàn)PID參數(shù)的在線調(diào)整,控制器自適應(yīng)性好;該算法不要求被控對(duì)象有精確的數(shù)學(xué)模型,擴(kuò)大了應(yīng)用范圍,控制效果良好;在合理選擇神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)的情況下,該算法有很強(qiáng)的泛化能力。基于以上優(yōu)點(diǎn),神經(jīng)網(wǎng)絡(luò)PID控制器具有很好的發(fā)展應(yīng)用前景。
pid控制器相關(guān)文章:pid控制器原理
評(píng)論