大功率VDMOS(200V)的設(shè)計(jì)研究
功率MOS場(chǎng)效應(yīng)晶體管是新一代電力電子開關(guān)器件,在微電子工藝基礎(chǔ)上實(shí)現(xiàn)電力設(shè)備高功率大電流的要求。自從垂直導(dǎo)電雙擴(kuò)散VDMOS(VerticalDou-ble-diff used Metal Oxide Semiconductor)新結(jié)構(gòu)誕生以來,電力MOSFET得到了迅速發(fā)展。本文分別從管芯的靜態(tài)參數(shù)設(shè)計(jì)方面,介紹了VMDOS(200 V)設(shè)計(jì)的方法以及仿真的結(jié)果,并對(duì)流片結(jié)果進(jìn)行了比較。
本文引用地址:http://www.ex-cimer.com/article/178122.htm1 芯片設(shè)計(jì)
1.1 芯片設(shè)計(jì)思路設(shè)計(jì)
高壓的VDMOS器件,希望得到高的耐壓容量,低的特征導(dǎo)通電阻。降低導(dǎo)通電阻的方法主要是:減薄外延厚度、降低外延層電阻率、增加?xùn)砰L(zhǎng)LG、降低P-body的結(jié)深(xp+wo);而高的耐壓容量要求:增加外延層厚度、增加外延電阻率、減小櫥長(zhǎng)LG,P-body的結(jié)深對(duì)耐壓的影響取決于P-body間距的減小和外延耗盡厚度的減薄哪個(gè)因素對(duì)耐壓的影響更大。高壓VDMOS的靜態(tài)參數(shù)優(yōu)化設(shè)計(jì)主要矛盾集中在外延的選擇、柵長(zhǎng)及P-body的結(jié)深的確定上。
1.2 VDMOS耐壓的設(shè)計(jì)
使半導(dǎo)體器件耐壓受到限制的電擊穿有雪崩擊穿與隧道擊穿2種,隧道擊穿主要發(fā)生在耐壓小于7 V的低壓器件中。在這里只討論高壓器件所涉及到的雪崩擊穿。計(jì)算雪崩擊穿的公式:
αeff=1.8×10-35E7cm-1
式中:E以V/cm為單位。
表1中列出了幾種結(jié)的擊穿電壓、最大電場(chǎng)EM與耗盡層厚度的關(guān)系。
表1中:VBR的單位V,NB的單位為cm-3。NB對(duì)單邊突變結(jié)代表輕摻雜區(qū)的雜質(zhì)濃度,對(duì)雙邊突變結(jié)代表:
式中:NA及ND是兩邊的雜質(zhì)濃度;a代表線性緩變結(jié)雜質(zhì)濃度梯度單位為:cm-4。
當(dāng)襯底雜質(zhì)濃度NB低而a值大時(shí),VBR過渡到最下方的斜線,與單邊突變結(jié)一致;當(dāng)NB高而a值小時(shí),VBR與NB無(wú)關(guān),這相當(dāng)于線性緩變結(jié)的情形。
由于導(dǎo)通電阻隨擊穿電壓猛烈增長(zhǎng),使得提高表面擊穿電壓在功率MOS中顯得格外重要,因?yàn)槿舯砻鎿舸╇妷旱陀隗w內(nèi)很多,即等于此耐壓的管子要以無(wú)謂增大導(dǎo)通電阻作犧牲來達(dá)到。為了提高表面擊穿電壓,功率MOS常用的終端技術(shù)有浮空?qǐng)鱿蕲h(huán)、場(chǎng)板等,有時(shí)還將這些技術(shù)結(jié)合起來使用,使表面擊穿電壓達(dá)到體內(nèi)擊穿電壓的70 %~90%。
現(xiàn)代的終端技術(shù)已能使表面擊穿電壓達(dá)到體內(nèi)理想一維電場(chǎng)分布的擊穿電壓的90%,在這種情況下,另一影響擊穿電壓的因素需要考慮,這就是每一個(gè)阱邊角上的電場(chǎng)集中效應(yīng)。當(dāng)兩個(gè)P阱之間距離很近時(shí),邊角電場(chǎng)出現(xiàn)峰值并不明顯,擊穿電壓沒有多大下降,但是P阱靠近則導(dǎo)通電阻也變大。由此可見,在這種情形下,高壓器件的元胞圖形對(duì)導(dǎo)通電阻又發(fā)生影響。計(jì)算表明方形阱最差,因?yàn)槠浣巧蠟榍蛎娼Y(jié),擊穿最低。條狀結(jié)構(gòu)的P阱沒有角,只有邊,邊上為圓柱結(jié),擊穿電壓稍高,但條狀結(jié)構(gòu)有較高的導(dǎo)通電阻,仔細(xì)的研究結(jié)果表明,最優(yōu)的結(jié)構(gòu)是圓形元胞,而且兩個(gè)P阱之間的距離應(yīng)比由邊緣電場(chǎng)決定的距離稍大。但是,圓形在制版過程和工藝對(duì)準(zhǔn)方面有一定的困難,所以近似圓形的六角形成為最佳的選擇。
評(píng)論