基于32位微處理器AEMB的SoC系統(tǒng)驗(yàn)證平臺設(shè)計(jì)
SoC芯片的規(guī)模一般遠(yuǎn)大于普通的ASIC,同時(shí)深亞微米工藝帶來的設(shè)計(jì)困難等使得SoC設(shè)計(jì)的復(fù)雜度大大提高。仿真與驗(yàn)證是SoC設(shè)計(jì)流程中最復(fù)雜、最耗時(shí)的環(huán)節(jié),約占整個(gè)芯片開發(fā)周期的50%~80%,采用先進(jìn)的設(shè)計(jì)與仿真驗(yàn)證方法成為SoC設(shè)計(jì)成功的關(guān)鍵。一個(gè)簡單可行的SoC驗(yàn)證平臺,可以加快SoC系統(tǒng)的開發(fā)與驗(yàn)證過程。FPGA器件的主要開發(fā)供應(yīng)商都針對自己的產(chǎn)品推出了SoC系統(tǒng)的開發(fā)驗(yàn)證平臺,如基于Nios II微處理器的SOPC系統(tǒng)與基于MicroBlaze微處理器的SOPC系統(tǒng)等。它們功能強(qiáng)大,而且配有相應(yīng)的開發(fā)環(huán)境與系統(tǒng)集成的IP核。但每個(gè)器件廠商的SOPC系統(tǒng)只適用于自己開發(fā)的器件,同時(shí)需要支付相應(yīng)的使用費(fèi)用且沒有源代碼,所以在學(xué)習(xí)以及普通設(shè)計(jì)開發(fā)驗(yàn)證中使用起來會(huì)有諸多的不便。
本文引用地址:http://www.ex-cimer.com/article/189649.htm本文采用OpenCores組織所發(fā)布的32位微處理器AEMB作為SoC系統(tǒng)的控制中心,通過Wishbone總線互聯(lián)規(guī)范將OpenCores組織發(fā)布維護(hù)的相關(guān)IP核集成在目標(biāo)SoC系統(tǒng)上,構(gòu)成了最終的SoC驗(yàn)證平臺。
1 AEMB及Wishbone總線介紹
AEMB是一款高效的開源微處理器軟核,在指令上與Xilinx公司針對其器件開發(fā)的Microblaze微處理器兼容,而且在結(jié)構(gòu)上還有所增強(qiáng)。它主要有以下特點(diǎn):
①軟核設(shè)計(jì)得非常小,相對于其他的一些微處理器軟核,在物理實(shí)現(xiàn)上占用較少的硬件邏輯資源;
②支持硬件上的多線程,可以有效地執(zhí)行操作系統(tǒng)相關(guān)的代碼;
③AEMB是在LGPL3下開發(fā)的,所以它完全可以作為一個(gè)部分嵌入到一個(gè)大的設(shè)計(jì)中,同時(shí)非常適合一些科研院所以及高?;蛘邆€(gè)人用來學(xué)習(xí);
④支持Wishbone總線規(guī)范,可以非常容易地集成其他的一些支持Wishbone總線規(guī)范的開源IP核;
⑤完全通過一些參數(shù)來定義系統(tǒng)的可配置功能,如系統(tǒng)的地址空間和一些其他可選的功能單元;
⑥在指令上99%與EDK6.2兼容,可以方便地使用已經(jīng)非常成熟的開發(fā)工具鏈。
Wishbone總線規(guī)范是一種片上系統(tǒng)IP核互連體系結(jié)構(gòu)。它定義了一種IP核之間公共的邏輯接口,減輕了系統(tǒng)組件集成的難度,提高了系統(tǒng)組件的可重用性、可靠性和可移植性,加快了產(chǎn)品市場化的速度。Wishbone總線規(guī)范可用于軟核、固核和硬核,對開發(fā)工具和目標(biāo)硬件沒有特殊要求,并且?guī)缀跫嫒菽壳按嬖诘乃芯C合工具,可以用多種硬件描述語言來實(shí)現(xiàn)。Wishbone總線提供了4種不同的IP核互連方式:
◆點(diǎn)到點(diǎn)(point-to-point),用于兩IP核直接互連;
◆數(shù)據(jù)流(data flow),用于多個(gè)串行IP核之間的數(shù)據(jù)并發(fā)傳輸;
◆共享總線(shared bus),多個(gè)IP核共享一條總線;
◆交叉開關(guān)(crossbar switch),同時(shí)連接多個(gè)主從部件,可提高系統(tǒng)吞吐量。
2 SoC系統(tǒng)驗(yàn)證平臺總體框架
SoC系統(tǒng)中主要包含的IP模塊有:32位開源微處理器軟核AEMB、中斷控制器、時(shí)鐘定時(shí)器、Wishbone總線、片上RAM控制器、SDRAM控制器、SSRAM控制器、Flash控制器、UART16550控制器、GPIO控制器。整個(gè)SoC系統(tǒng)的總體結(jié)構(gòu)如圖1所示。
圖1 SoC系統(tǒng)總體結(jié)構(gòu)
為了方便后續(xù)開發(fā)與應(yīng)用,本SoC系統(tǒng)中的Wishbone總線仲裁采用了開源的IP軟核wb_conmax。其為8×16的結(jié)構(gòu),即在該Wishbone總線模塊中可以使用8個(gè)主設(shè)備與16個(gè)從設(shè)備。本系統(tǒng)中使用了8個(gè)從設(shè)備接口和2個(gè)主設(shè)備接口。AEMB軟核中沒有提供時(shí)鐘定時(shí)器與中斷控制器,為了正常使用該軟核,本系統(tǒng)中加入了中斷控制器和時(shí)鐘定時(shí)器,這兩個(gè)控制器是作為從設(shè)備添加進(jìn)來的。針對一些對存儲(chǔ)空間需求很少的應(yīng)用,系統(tǒng)將片上RAM作為主存儲(chǔ)器。然而,F(xiàn)PGA片上存儲(chǔ)器的空間是非常有限的,為了能夠運(yùn)行需要大量存儲(chǔ)空間的操作系統(tǒng),以及讓系統(tǒng)正常上電啟動(dòng),就需要外部存儲(chǔ)器作為系統(tǒng)的主存儲(chǔ)器。所以,系統(tǒng)中還添加了SDRAM、SSRAM控制器及Flash存儲(chǔ)器。UART16550控制器和GPIO控制器作為2個(gè)從設(shè)備連接在系統(tǒng)中。
3 SoC系統(tǒng)驗(yàn)證平臺具體構(gòu)建
3.1 AEMB版本的選擇與配置
AEMB軟核采用最新的EDK62版本。本設(shè)計(jì)的目的在于整個(gè)SoC系統(tǒng)驗(yàn)證平臺的構(gòu)建,對微處理器性能及整個(gè)SoC系統(tǒng)的具體應(yīng)用性能沒有要求。為了簡化設(shè)計(jì),將AEMB軟核中可配置的一些優(yōu)化選項(xiàng)全部禁掉。這樣不僅省去了對FPGA硬件邏輯資源的占用,而且也避免了因一些具體細(xì)節(jié)使用不當(dāng)而帶來的諸多問題。
3.2 片上RAM的生成
為了減少對FPGA邏輯資源的占用,同時(shí)又能夠滿足最基本的啟動(dòng)代碼的存放與運(yùn)行,將片內(nèi)存儲(chǔ)器的大小設(shè)為4 KB。使用Altera公司的FPGA開發(fā)環(huán)境QuartusII 9.0中的MegaWizard Plug-In Manager工具,來生成設(shè)定大小為4 KB的片上RAM。EDA開發(fā)工具生成的片上存儲(chǔ)文件僅是具有相關(guān)存儲(chǔ)器地址、數(shù)據(jù)及讀寫控制信號的一個(gè)HDL描述文件。為了能夠在本SoC系統(tǒng)中使用,需要將其包裝成符合Wishbone總線接口的一個(gè)從設(shè)備,以掛接在系統(tǒng)的Wishbone總線上。
3.3 片外存儲(chǔ)控制器的配置
在該SoC系統(tǒng)上,片外存儲(chǔ)控制器主要有SDRAM、Flash、SSRAM控制器。根據(jù)臺灣友晶公司的DE2-70開發(fā)板上實(shí)際存儲(chǔ)芯片的需要,對控制器的數(shù)據(jù)總線寬度與地址總線寬度作相應(yīng)的修改與定制。一般情況下,SDRAM作為系統(tǒng)的主存儲(chǔ)器,F(xiàn)lash用來存儲(chǔ)系統(tǒng)的一些固化程序。在對一些實(shí)時(shí)系統(tǒng)進(jìn)行時(shí)間參數(shù)測量的過程中,為了減小程序運(yùn)行空間中時(shí)序的不穩(wěn)定性影響,一般情況下測試程序都是在SSRAM器件中運(yùn)行的。
作為存儲(chǔ)器件的物理芯片,數(shù)據(jù)總線的端口基本上都是雙向的,而在片內(nèi)系統(tǒng)中數(shù)據(jù)端口基本上都是單向的。這些片外存儲(chǔ)控制器在進(jìn)行物理板級的連接時(shí)需要對相應(yīng)的數(shù)據(jù)端口作處理。以Flash控制器為例,數(shù)據(jù)總線的雙向I/O口具體實(shí)現(xiàn)RTL代碼如下:
其他的存儲(chǔ)器(如SDRAM、SSRAM)的數(shù)據(jù)總線雙向I/O的實(shí)現(xiàn),也都是采用這種方法來完成的。
評論