<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 印制電路板電互連與光互連介紹及其對(duì)比

          印制電路板電互連與光互連介紹及其對(duì)比

          作者: 時(shí)間:2012-06-06 來(lái)源:網(wǎng)絡(luò) 收藏

          一、光電印制電路的板的結(jié)構(gòu)原理

          本文引用地址:http://www.ex-cimer.com/article/190293.htm

            光電用高速的光連接技術(shù)取代目前計(jì)算機(jī)中所采用的銅導(dǎo)線連接,以光子而不是以電子為媒介,在電路板、芯片甚至芯片的各個(gè)部分之間傳輸數(shù)據(jù)。同時(shí)還可以傳送傳統(tǒng)的效率低的電信號(hào),其基本工作原理為:

            大規(guī)模的集成芯片產(chǎn)生的電信號(hào)經(jīng)過(guò)驅(qū)動(dòng)芯面作用VSCEL激光發(fā)射器,激光束直接或通過(guò)透鏡傳輸?shù)接?5°鏡面的聚合物波導(dǎo)反射進(jìn)入波導(dǎo)中,然后通過(guò)另一端波導(dǎo)鏡面反射傳送到PD接收,再經(jīng)過(guò)接收芯片轉(zhuǎn)換成電信號(hào)傳輸給大集成芯片。這樣使得芯片與芯片之間能通過(guò)光波導(dǎo)高速通訊,從而整體提高系統(tǒng)性能。

            該P(yáng)CB的制作與傳統(tǒng)的PCB制作流程兼容,只是把聚合物波導(dǎo)當(dāng)成PCB其中銅的特性。

            二、光學(xué)PCB的優(yōu)點(diǎn)

            前面有提到,銅連線的數(shù)據(jù)傳輸率受到其寄生參量電阻、電感和電容的影響。在低頻段,電路板的串接電阻和旁路電容對(duì)性能的影響很大,直接決定上升沿和下降沿的轉(zhuǎn)換時(shí)間,從而影響數(shù)據(jù)的傳輸速率;在高頻段,連線串接感抗影響超過(guò)電阻,最終的結(jié)果與串接電阻和旁路電容相同,限制了數(shù)據(jù)的傳輸速率。所有這些寄生參量很大程度上依賴于連線的幾何形狀,電阻正比于連線長(zhǎng)度,反比于截面積,因此連線越長(zhǎng)越細(xì),則數(shù)據(jù)傳輸率越低。現(xiàn)有的空間限制將不允許連線太粗。雖然在降低轉(zhuǎn)換時(shí)間方面可以采用較硬的連線,但同時(shí)加大了噪音與功耗,而且發(fā)熱量的增加將難以控制。

            相對(duì)于,有以下幾個(gè)特性:

            1.的速度與互連通道無(wú)關(guān);

            2.光學(xué)信號(hào)在空間可獨(dú)立傳播,彼此之間互不干擾;

            3.光學(xué)信號(hào)可以在三維自由空間傳播。

            另外,光互連可以通過(guò)空間光調(diào)節(jié)器(SLM)適當(dāng)改變,而且光信號(hào)非常容易轉(zhuǎn)變成電信號(hào)。

            綜上所述,光學(xué)PCB和傳統(tǒng)PCB的優(yōu)點(diǎn)如下:

            傳統(tǒng)PCB 光電PCB

            能量消耗高 較少衰減和分散,長(zhǎng)傳導(dǎo)距離低能消耗

            互連密度受制于EMI 互連不受EMI影響,無(wú)地層或參考平面

            低針密度(小于50針/in) 大針密度

            直接調(diào)制或GHz載波調(diào)制 THz載波調(diào)制

            較小帶寬 很大帶寬

            難于控制反射 易于控制過(guò)反射

            三、光電PCB發(fā)展的三個(gè)時(shí)代

            第一代:在PCB上分散纖維光芯片-芯片互連和板-板互連

            發(fā)展于20世紀(jì)90年代初,主要使用分離式光纖及光纖連接器來(lái)進(jìn)行摸組與摸組之間或摸組與元器件之間的互換,為目前大型主機(jī)所廣泛采用。由于結(jié)構(gòu)簡(jiǎn)便,因此可提供較低廉的點(diǎn)對(duì)點(diǎn)光連接。

            由于采用單膜(Discrete)光纖在載板內(nèi)的光互連,這種形式的光互連,是過(guò)去已采用的光纖通信技術(shù)的一種衍生。因此它比較容易實(shí)現(xiàn)將光通信信號(hào)由一點(diǎn)傳遞到另一點(diǎn)的定向傳送方式。

            第二代:撓性基板光連接技術(shù)

            發(fā)展于20世紀(jì)90年代中期,利用撓性基板進(jìn)行光纖分布,同樣的,該技術(shù)可以應(yīng)用于如前所述的連接器進(jìn)行點(diǎn)對(duì)點(diǎn)的光連接。撓性光波導(dǎo)薄板構(gòu)成光信號(hào)網(wǎng)絡(luò),是光波導(dǎo)線路產(chǎn)品的形式和技術(shù)的第二發(fā)展階段的最突出特點(diǎn)。有光纖代替了金屬絲線。這樣對(duì)于它的特點(diǎn),是以撓性材料作為固定的載體,實(shí)現(xiàn)撓性光纖的光信號(hào)傳送。在配線中的特性阻抗高精度的控制方面,它比原有電氣配線形式特有了明顯的改善。

            第三代:混雜式光電連接技術(shù)

            根據(jù)埋入式材料和結(jié)構(gòu)的特點(diǎn),大概可以分為以下四種技術(shù):表面型高分子波導(dǎo)、埋入式高分子波導(dǎo)、埋入式光纖技術(shù)和埋入式光波導(dǎo)玻璃。與前兩種最大的區(qū)別是此技術(shù)可以提供多回路的光波導(dǎo),而且可以與有源及無(wú)源元件進(jìn)行連接。第三代的光波導(dǎo)線路方式,是以現(xiàn)有與光傳送線路形成一體化的光電。實(shí)現(xiàn)這種復(fù)合化的優(yōu)點(diǎn)在于:在板上能夠有比初期階段引入光纖配線形式具有更高的光傳送線路的布線密度。同時(shí)還實(shí)現(xiàn)了光電轉(zhuǎn)換元件等的自動(dòng)化安裝。在PCB內(nèi)的光傳送通路使用材料方面的開(kāi)發(fā)動(dòng)向,采用了低傳送損失、高耐熱性的高聚物作為光波導(dǎo)線路材料。



          評(píng)論


          相關(guān)推薦

          技術(shù)專(zhuān)區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();