基于層次型AdaBoost檢測算法的快速人臉檢測在FPGA
訓練所得第n層強分類器所包含的弱特征個數(shù)如圖9(a)所示。通過大量檢測結果可得窗口通過率與層數(shù)n的關系如圖9(b)所示。
將層通過率與該層所含弱特征個數(shù)相乘,并乘以選定的一次處理窗口的數(shù)目(12),可得較為平滑曲線,如圖10所示。
從圖9(b)可知前7層分類器已將絕大多數(shù)的非人臉窗口拒掉。因此,處理單元數(shù)目即由前幾層中強分類器所含弱特征數(shù)與該層所處理的窗口數(shù)的乘積最大值決定,由圖10可知處理單元數(shù)目為38。這樣便可在較少資源的情況下大大提高檢測速度。
另外,為降低一次同時處理兩個臨近人臉窗口的概率,本文預先改變了候選窗口輸入次序。
3 實驗結果
實驗是對CMU-MIT測試庫進行的,而訓練時主要選用從Internet上收集得到的人臉圖像共1000幅,通過對這1 000幅圖像進行隨機旋轉、平移一個像素、隨機鏡像共得到5 000幅24×24像素的人臉訓練樣本。同時收集了1 600幅自然圖片作為非人臉樣本候選集。
輸入圖像為256×256像素,其檢測效果如圖11所示。對此種輸入圖像采用縮放因子的s=1.3,平移因子的d=2.5,搜索從30×30像素到255×255像素范圍內的人臉。整個系統(tǒng)用VHDL語言描述,表1為所用硬件資源情況。
其平均處理速度為17.3fps, 虛警率低于5E-7,檢測率可達0.998。
文中新定義的微特征具有對于特征放縮時近似引入誤差的魯棒性,以及去光照影響的特性。此外,本文設計的特征模板,不僅擴展了微結構特征庫,而且使用方便,可以根據(jù)需要選取合適特征。本文采用流水線技術將積分圖像的計算與分類器運算并行,提高了弱特征提取速度。而在硬件實現(xiàn)時,利用軟件訓練與測試結果。綜合速度和硬件資源兩指標,在保證檢測質量的前提下,設計最優(yōu)的硬件結構,充分利用硬件資源。
評論