<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > EDA/PCB > 設計應用 > 基于層次型AdaBoost檢測算法的快速人臉檢測在FPGA

          基于層次型AdaBoost檢測算法的快速人臉檢測在FPGA

          作者: 時間:2012-02-22 來源:網(wǎng)絡 收藏

          訓練所得第n層強分類器所包含的弱特征個數(shù)如圖9(a)所示。通過大量檢測結果可得窗口通過率與層數(shù)n的關系如圖9(b)所示。

          將層通過率與該層所含弱特征個數(shù)相乘,并乘以選定的一次處理窗口的數(shù)目(12),可得較為平滑曲線,如圖10所示。

          51.jpg

          從圖9(b)可知前7層分類器已將絕大多數(shù)的非人臉窗口拒掉。因此,處理單元數(shù)目即由前幾層中強分類器所含弱特征數(shù)與該層所處理的窗口數(shù)的乘積最大值決定,由圖10可知處理單元數(shù)目為38。這樣便可在較少資源的情況下大大提高檢測速度。

          另外,為降低一次同時處理兩個臨近人臉窗口的概率,本文預先改變了候選窗口輸入次序。

          3 實驗結果

          實驗是對CMU-MIT測試庫進行的,而訓練時主要選用從Internet上收集得到的人臉圖像共1000幅,通過對這1 000幅圖像進行隨機旋轉、平移一個像素、隨機鏡像共得到5 000幅24×24像素的人臉訓練樣本。同時收集了1 600幅自然圖片作為非人臉樣本候選集。

          輸入圖像為256×256像素,其檢測效果如圖11所示。對此種輸入圖像采用縮放因子的s=1.3,平移因子的d=2.5,搜索從30×30像素到255×255像素范圍內的人臉。整個系統(tǒng)用VHDL語言描述,表1為所用硬件資源情況。

          52.jpg

          其平均處理速度為17.3fps, 虛警率低于5E-7,檢測率可達0.998。

          文中新定義的微特征具有對于特征放縮時近似引入誤差的魯棒性,以及去光照影響的特性。此外,本文設計的特征模板,不僅擴展了微結構特征庫,而且使用方便,可以根據(jù)需要選取合適特征。本文采用流水線技術將積分圖像的計算與分類器運算并行,提高了弱特征提取速度。而在硬件實現(xiàn)時,利用軟件訓練與測試結果。綜合速度和硬件資源兩指標,在保證檢測質量的前提下,設計最優(yōu)的硬件結構,充分利用硬件資源。


          上一頁 1 2 3 下一頁

          評論


          相關推薦

          技術專區(qū)

          關閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();