<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > 基于FPGA的載波調(diào)制系統(tǒng)

          基于FPGA的載波調(diào)制系統(tǒng)

          作者: 時間:2009-02-01 來源:網(wǎng)絡(luò) 收藏

          電力線(PLC)通信作為電力系統(tǒng)特有的通信方式,廣泛用于電力系統(tǒng)的調(diào)度通信、生產(chǎn)指揮、行政業(yè)務(wù)通信以及其他各種信息的傳輸。隨著數(shù)字通信技術(shù)的發(fā)展,采用電力線上網(wǎng)、進(jìn)行多媒體通信也具有寬闊的前景,電力線通信已經(jīng)成為當(dāng)今研究熱點之一。

          本文引用地址:http://www.ex-cimer.com/article/192167.htm


          線路調(diào)制單元是電力線機(jī)中關(guān)鍵部件之一。為了提高頻帶的利用率,線路調(diào)制一般采用單邊帶調(diào)制方式。使用數(shù)字化處理方法來實現(xiàn)線路的單邊帶調(diào)制,能夠克服模擬電路的諸多缺陷。線路調(diào)制需要完成正交變換、濾波和頻譜搬移等處理,運算量與采樣率直接相關(guān)。高采樣率導(dǎo)致了高的運算量,低成本DSP芯片無法滿足運算需求。可用于實現(xiàn)DSP運算處理單元,達(dá)到實時完成數(shù)字信號處理功能的目的,它為線路調(diào)制單元的數(shù)字化實現(xiàn)提供了一條性價比較高的途徑。本文將介紹線路調(diào)制的實現(xiàn),包括:線路調(diào)制單元數(shù)字化實現(xiàn)的總體設(shè)計,CIC和FIR濾波器的實現(xiàn)以及載波發(fā)生器單元的設(shè)計。


          線路調(diào)制解調(diào)實現(xiàn)方案
          電力線載波通信標(biāo)準(zhǔn)要求的信號頻率為40~500kHz,頻帶寬度為4kHz。根據(jù)奈奎斯特定理,采樣頻率不能小于1MHz。采用數(shù)字化處理方式實現(xiàn)調(diào)制就是將信號的頻譜搬移過程轉(zhuǎn)化為數(shù)字域的數(shù)值計算過程。單邊帶信號可以表示為x(n)cos(wn)±x^(n)sin(wn),式中x(n)為基帶信號,x^(n)為基帶信號的正交信號,w為載波頻率。由該式可知,完成單邊帶調(diào)制需要信號的正交變換、載波信號的產(chǎn)生、信號與載波的乘加等數(shù)值運算。希爾伯特變換是一種便于采用FPGA實現(xiàn)的正交變換方法,它可由系數(shù)具有奇對稱特性的FIR濾波器實現(xiàn)。


          基帶信號的頻率較低,相應(yīng)應(yīng)以較低的采樣率采樣,而調(diào)制信號的頻率較高,應(yīng)以較高的采樣率采樣。因此在調(diào)制過程中必須進(jìn)行采樣率的提升,內(nèi)插技術(shù)可以實現(xiàn)采樣率的變換。調(diào)制單元調(diào)制部分的數(shù)字化實現(xiàn)的邏輯結(jié)構(gòu)如圖1所示。


          由圖1可見,調(diào)制單元由正交變換、內(nèi)插和調(diào)制三部分組成。完成正交變換的Hilbert濾波器為系數(shù)奇對稱的FIR濾波器,延遲保持了正交信號與原始信號的時間同步。載波發(fā)生器,乘法器和加法器完成單邊帶調(diào)制。載波發(fā)生器由查表法實現(xiàn),地址為13位,字長為16位,可以產(chǎn)生所需要的各種載波頻率。內(nèi)插完成采樣率的提升,再用低通濾波器濾除無用頻率分量。在設(shè)計中,通過內(nèi)插將信號采樣率由8kS/s提升至8.192MS/s,內(nèi)插率I=1024。分兩級完成:第一級內(nèi)插率I=8,該級內(nèi)插采用128階系數(shù)偶對稱FIR濾波器濾波。第二級內(nèi)插率I=128,該級內(nèi)插采用3級級聯(lián)的CIC(積分梳狀)濾波器。


          由上述方案可見,合理設(shè)計FIR、CIC濾波器和載波發(fā)生器電路是線路調(diào)制單元數(shù)字化實現(xiàn)的關(guān)鍵,線路調(diào)制單元和其他的組件進(jìn)行數(shù)據(jù)交換,控制和接口電路在此不作一一贅述。

          濾波器的FPGA設(shè)計
          線路調(diào)制解調(diào)需要用到FIR和CIC兩種濾波器,這兩種濾波器的共同特點是,具有線性相位,非常適合應(yīng)用需求。但這兩種濾波器對FPGA資源耗費較大,因此必須采用合理的結(jié)構(gòu)減少FPGA資源的開銷。


          1 CIC濾波器的設(shè)計
          設(shè)計CIC濾波器時,首先要考慮濾波器的增益,防止溢出。內(nèi)插均選用三級級聯(lián)的CIC濾波器,傳遞函數(shù)為H(z)=((1-z-128)/(1-z-1))3。由傳遞函數(shù)可以求出濾波器的增益為1283,增加的字長為log2(128)3=21位,輸入信號寬度為13位,實現(xiàn)時必須預(yù)留21+13=34位防止溢出。將內(nèi)插器與濾波器結(jié)合起來并對其實現(xiàn)如圖2所示。

          圖2 cic內(nèi)插


          程序設(shè)計采用VHDL語言,用Quartus II 3.0綜合后CIC濾波器耗費資源350個LE(Logic Element)。根據(jù)Hogenaur的剪除理論在每一級輸出時都可以剪除掉最后的若干位。通過信噪比的計算,可確定剪除位數(shù),設(shè)計中積分部分每級可以剪除6位,分別取22、28和34位,梳狀部分每級剪除1位,分別取14、15和16位,濾波器的輸出為13位。采用剪除理論后,消耗的資源為240個LE,資源消耗減少了32%。


          2 FIR濾波器的設(shè)計
          FIR濾波器階數(shù)高,如果按其級聯(lián)結(jié)構(gòu)實現(xiàn)時資源的利用率非常低,須加以改進(jìn)。一種方法是提高時鐘速度,重復(fù)利用乘法器和加法器。這種方法程序設(shè)計比較復(fù)雜,時鐘提升也導(dǎo)致功耗增加,額外資源的消耗較多。另一種方法是利用FIR濾波器的分布式結(jié)構(gòu)進(jìn)行設(shè)計,這是一種高效的方法。信號x(n)通過N抽頭,n位的FIR濾波器可以用下式表示,其中h(n)是濾波器系數(shù),y為輸出信號。

          輸入信號x(n)采用補(bǔ)碼的形式,可表示為

          重新對上式求和如下:

          簡寫形式如下:

           

          由上式可看出,把輸入信號每位的值xb作為地址,將濾波器系數(shù)h(n)的值和xb的每一位xb(n)乘積疊加,并將結(jié)果存入ROM中,就可以通過查表并移位相加而得到最終內(nèi)積的結(jié)果。整個濾波器的實現(xiàn)無須乘法器,節(jié)省了FPGA片內(nèi)資源。實驗證明按照級聯(lián)結(jié)構(gòu)進(jìn)行設(shè)計時,128階FIR濾波器需要占用3000個LE以上,提高時鐘重復(fù)利用乘法器后為1500LE,而采用分布式的結(jié)構(gòu)資源消耗僅為900多個LE。希爾伯特濾波器由于階數(shù)較低,消耗的資源更少。假定數(shù)據(jù)h(n)為B位,F(xiàn)IR的階數(shù)為N,則需要的地址空間為2N,當(dāng)N較大時實現(xiàn)會有困難。通過將128階的濾波器分割為8塊16階的方法,有效減少了存儲容量。該結(jié)構(gòu)既節(jié)省資源又靈活。利用線性相位FIR濾波器的對稱性,還可以節(jié)省一半存儲量。


          3載波發(fā)生器的實現(xiàn)
          電力線路中影響衰減特性的因素很多,這就要求電力線載波機(jī)線路調(diào)制單元的載波頻率可變。NCO可以產(chǎn)生不同頻率的正弦信號抽樣值。如圖3所示,預(yù)先存儲一張正弦信號ROM表,表中放有8192個抽樣點的值。假設(shè)所需的載波頻率為300kHz,NCO從ROM表中每隔300個點取出一個值,即可得到頻率為300kHz正弦信號的抽樣值。在實現(xiàn)中正弦信號ROM表的是通過對頻率為1Hz的正弦信號在一個周期內(nèi)進(jìn)行8192次等間隔采樣得到的。由于頻率分辨率為1kHz,所以根據(jù)需要載波頻率的不同,NCO改變抽取點間的間隔,就能在一定范圍內(nèi)得到任何1kHz整數(shù)倍頻率的正弦信號抽樣值。

          圖3 NCO內(nèi)部原理圖

          圖4 NCO設(shè)計流程


          正弦信號具有重復(fù)性,因此設(shè)計時只需存放四分之一個周期的值,即2048個抽樣值。這樣節(jié)約了大量的ROM空間和存儲單元。NCO的流程如圖4所示。


          正弦信號和余弦信號僅僅是相位上偏差了90°,因此每次從ram中取正弦信號抽樣值的時候,將地址指針延遲四分之一周期就能取出與之嚴(yán)格同步的余弦信號值。設(shè)計時NCO采用了雙時鐘結(jié)構(gòu),CLK為低頻時鐘,CLK1為高頻時鐘。在低頻時鐘內(nèi)使用一個地址指針控制提取兩路載波的地址,在高頻時鐘內(nèi)根據(jù)地址依次提取正弦和余弦抽樣值。低頻時鐘控制地址指針的變換,在時鐘上升延到來時變更指針。CLK經(jīng)過一個周期的時間內(nèi),CLK1經(jīng)過6個周期:前三個周期空等待,等待地址指針m的刷新;而后的三個周期依次根據(jù)地址取出正弦余弦的抽樣值,并作同步輸出。

          性能測試與分析
          采用本文中方案所設(shè)計的語音信號調(diào)制單元,通過一次變頻的方式完成單邊帶調(diào)制,除了在體積和可靠性具有無可比擬的優(yōu)勢外,其他性能指標(biāo)也有了很大的改進(jìn)。通過實測,其主要性能指標(biāo)如表1所示。

          結(jié)論
          滿足設(shè)計的芯片有多種,例如,Atlera公司的Cyclone芯片EP1C12Q240C8、EP2C5Q208C8、EP1C12Q240C8等。從成本和實用角度考慮,在地設(shè)計中采用芯片EP1C6Q240C8,實現(xiàn)了完整的單邊帶線路調(diào)制單元,經(jīng)過測試性能良好。僅用一片F(xiàn)PGA芯片,通過數(shù)字化的方式來實現(xiàn)線路調(diào)制,和以往的模擬實現(xiàn)方法相比,是一種技術(shù)的革新和進(jìn)步。采用數(shù)字化的實現(xiàn)方法后,整機(jī)的體積減小、成本低,可靠性有了很大的提高。用FPGA實現(xiàn)線路調(diào)制是一種有效的方法,為電力線載波機(jī)增加了相當(dāng)?shù)氖袌龈偁幜Α?/p>



          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();