基于μC/OS-Ⅱ的線控轉(zhuǎn)向FlexRay通信控制
近年來,隨著汽車工業(yè)和電子工業(yè)的不斷發(fā)展,汽車線控轉(zhuǎn)向技術(shù)成為了研究的熱點(diǎn),并提出了包括路感模擬、轉(zhuǎn)向穩(wěn)定性以及總線技術(shù)等諸多關(guān)鍵性問題并加以研究。其中的總線技術(shù),已經(jīng)得到了眾多知名汽車公司的積極研究與應(yīng)用。一些汽車制造商目前計(jì)劃采用FlexRay總線,這是一種特別適合下一代汽車應(yīng)用的網(wǎng)絡(luò)通信總線,具有容錯(cuò)功能和確定的消息傳輸時(shí)間,能夠滿足汽車控制系統(tǒng)的高速率通信要求。
FlexRaY是時(shí)間觸發(fā)的通信總線,對(duì)實(shí)時(shí)性要求較高,因此僅僅依靠由簡(jiǎn)單循環(huán)和中斷服務(wù)程序組成的嵌入式程序?qū)o法滿足要求。同時(shí),FlexRay通信在啟動(dòng)和運(yùn)行過程中,需要利用循環(huán)對(duì)總線狀態(tài)進(jìn)行查詢,既浪費(fèi)大量的系統(tǒng)資源,又容易造成程序死鎖,成為應(yīng)用中的難點(diǎn)問題。
基于上述問題,本文基于μC/OS-II操作系統(tǒng),設(shè)計(jì)了線控轉(zhuǎn)向中FlexRay總線的通信部分。在滿足實(shí)時(shí)性要求的基礎(chǔ)上,利用其多任務(wù)的特點(diǎn),節(jié)約了系統(tǒng)資源,避免了死鎖問題的出現(xiàn),并增加了通信故障檢測(cè)報(bào)警功能,為今后開發(fā)線控轉(zhuǎn)向系統(tǒng)奠定了基礎(chǔ)。
1 FlexRay總線技術(shù)
為了滿足汽車線控技術(shù)的需求,F(xiàn)lexRay聯(lián)盟于2005年發(fā)布了FlexRay總線協(xié)議。其主要特點(diǎn)有:雙通道傳輸,每個(gè)通道的傳輸速率高達(dá)lO Mb/s;具有靈活的使用方式,支持多種網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu);負(fù)載率高;提供冗余機(jī)制。
從開放式系統(tǒng)互連參考模型角度來看,F(xiàn)lexRay通信協(xié)議定義了四層結(jié)構(gòu):物理層、傳輸層、表示層和應(yīng)用層,各層功能描述見表1。表示層中,通信狀態(tài)切換控制整個(gè)FlexRay通信的運(yùn)行過程,具有十分重要的作用。本文引用地址:http://www.ex-cimer.com/article/197684.htm
FlexRay協(xié)議操作控制(Proposal Operation Control,POC)將通信狀態(tài)分為幾種狀態(tài),分別為:配置狀態(tài)(默認(rèn)配置、配置);就緒狀態(tài);喚醒狀態(tài);啟動(dòng)狀態(tài);正常狀態(tài)(正常主動(dòng)、正常被動(dòng));暫停狀態(tài)。其狀態(tài)轉(zhuǎn)換圖如圖1所示。當(dāng)控制器主機(jī)接口(Controller Host Interface,CHI)給通訊控制器(CC)發(fā)送命令后,CC從暫停狀態(tài)進(jìn)入默認(rèn)配置狀態(tài),滿足配置條件后進(jìn)入配置狀態(tài),完成網(wǎng)絡(luò)初始化和節(jié)點(diǎn)通信任務(wù)初始化;之后可以進(jìn)入就緒狀態(tài),完成節(jié)點(diǎn)內(nèi)部通信設(shè)置,如果沒有滿足通信就緒條件,就返回配置狀態(tài)繼續(xù)配置;在就緒狀態(tài),CC可以發(fā)送喚醒幀,喚醒網(wǎng)絡(luò)中沒有在通信的節(jié)點(diǎn),也可以獲得CPU的啟動(dòng)通信命令,完成與FlexRay網(wǎng)絡(luò)時(shí)鐘同步;啟動(dòng)成功后進(jìn)入正常狀態(tài),完成數(shù)據(jù)的收發(fā);當(dāng)出現(xiàn)錯(cuò)誤時(shí),可由正常狀態(tài)進(jìn)入暫停狀態(tài),重新等待CHI命令。
由此可見,控制器需要按照POC狀態(tài)進(jìn)行相應(yīng)操作,因此會(huì)出現(xiàn)對(duì)POC狀態(tài)的循環(huán)檢測(cè),容易造成程序死鎖以及占用大量系統(tǒng)資源。按照操作系統(tǒng)的介紹,其任務(wù)是以循環(huán)的形式存在的,因此可以將檢測(cè)POC狀態(tài)放入任務(wù)中單獨(dú)執(zhí)行,通過操作系統(tǒng)進(jìn)行任務(wù)調(diào)度,可以避免影響到其他任務(wù)中程序的運(yùn)行,并且提高程序的執(zhí)行效率。
2 基于MC9S12XF512的μC/OS-Ⅱ移植
μC/OS-Ⅱ是源碼公開的操作系統(tǒng),具有執(zhí)行效率高、占用空間小和實(shí)時(shí)性能優(yōu)良等特點(diǎn)。利用該操作系統(tǒng)的任務(wù)機(jī)制,設(shè)計(jì)實(shí)現(xiàn)Flex-Ray協(xié)議,可以大大提高系統(tǒng)的實(shí)時(shí)性和穩(wěn)定性,并且可以避免檢測(cè)POC狀態(tài)時(shí)的死鎖現(xiàn)象。
目前市場(chǎng)上支持FlexRay通信的單片機(jī)較少,只有Freescale公司的技術(shù)比較成熟。考慮到成本問題,選擇16位單片機(jī)MC9S12XF512作為系統(tǒng)控制器芯片。操作系統(tǒng)的使用首先要解決的就是移植問題。根據(jù)μC/OS-Ⅱ的文件結(jié)構(gòu),移植時(shí)需要對(duì)OS_CPU.H,(OS_CPU_A.ASM和OS_CPUC.C三個(gè)文件進(jìn)行修改,以適合MC9S12xF512芯片的需要。
2.1 修改OS_CPU.H文件
OS_CPU.H文件定義與CPU相關(guān)的硬件信息,包括各種數(shù)據(jù)類型對(duì)應(yīng)的存儲(chǔ)長(zhǎng)度等。針對(duì)MC9S12xF512中的堆棧是由高地址向低地址增長(zhǎng)的,所以常量OS_STK_GROWTH必須設(shè)置為1。同時(shí),定義任務(wù)調(diào)度函數(shù)OS_TASK_SW()設(shè)置為軟中斷源。
2.2 修改OS_CPU_A.ASM文件
OS_CPU_A.ASM文件是使用匯編語(yǔ)言編寫與任務(wù)調(diào)度部分有關(guān)的代碼。包括任務(wù)級(jí)任務(wù)切換函數(shù)OSCtxSw()、中斷級(jí)任務(wù)切換函數(shù)OSIntCtxSw()、以及讓優(yōu)先級(jí)最高的就緒態(tài)任務(wù)開始運(yùn)行的函數(shù)OS-StartHighRdy()。
MC9S12XF512芯片不僅設(shè)有FLASH頁(yè)面管理寄存器PPage,也有RAM頁(yè)面管理寄存器RPage、E2PROM頁(yè)面管理寄存器EPage以及全程寄存器GPage。當(dāng)時(shí)鐘節(jié)拍中斷發(fā)生時(shí),芯片會(huì)自動(dòng)把CPU寄存器推入堆棧,但是并不包括上述各寄存器,因此在OS_CPU_A.ASM文件三個(gè)函數(shù)中,均需要加入將寄存器入棧和出棧的語(yǔ)句。由于篇幅有限,僅以PPage代碼為例:
寄存器的入棧必須按照GPage,EPage,RPage,PPage的順序,出棧則相反。
2.3 修改OS_CPUC.C文件
OS_CPUC.C文件是使用C語(yǔ)言編寫與任務(wù)調(diào)度部分有關(guān)的代碼,包括任務(wù)堆棧初始化函數(shù)OSTaskStklnit()和時(shí)鐘節(jié)拍中斷服務(wù)子程序OSTicklSR()。
2.3.1 修改任務(wù)堆棧初始化函數(shù)0STaskStkInit()
由于μC/OS-Ⅱ是利用中斷方式來實(shí)現(xiàn)任務(wù)調(diào)度的,因此需要使用函數(shù)OSTaskStklnit()來模擬發(fā)生一次中斷后的堆棧結(jié)構(gòu),按照中斷后的進(jìn)棧次序預(yù)留各個(gè)寄存器存儲(chǔ)空間,而中斷返回地址指向任務(wù)代碼的起始地址。編寫時(shí)需要根據(jù)芯片的中斷后,X,Y,A,B,SP等寄存器入棧順序來進(jìn)行代碼編寫。首先在例程OSTaskStkInit()函數(shù)處設(shè)置斷點(diǎn),然后單步執(zhí)行程序,觀察X,Y,A,B,SP等寄存器狀態(tài)是否與程序編寫的存儲(chǔ)值對(duì)應(yīng)。發(fā)現(xiàn)對(duì)應(yīng)于堆棧指針SP值的存儲(chǔ)區(qū)地址是模擬中斷時(shí)進(jìn)棧的存儲(chǔ)地址,而其中保存任務(wù)程序指針地址的內(nèi)容是錯(cuò)誤的,即不是任務(wù)的指針地址,因此每次在需要調(diào)用任務(wù)執(zhí)行時(shí)都進(jìn)入了錯(cuò)誤的地址進(jìn)行執(zhí)行,并沒有找到任務(wù)的代碼。通過單步執(zhí)行OSTaskStkI-nit()函數(shù),可以發(fā)現(xiàn)原程序在存儲(chǔ)任務(wù)代碼指針PC值時(shí),只存儲(chǔ)了PC指針的高8位,但后8位未存,導(dǎo)致指針指向錯(cuò)誤。因此修改程序?yàn)椋?br /> *--wstk=(INTl6U)((INT32U)task);
2.3.2 修改時(shí)鐘節(jié)拍中斷服務(wù)子程序OSTickISR()
時(shí)鐘節(jié)拍中斷服務(wù)子程序OSTickISR()負(fù)責(zé)處理所有與定時(shí)相關(guān)的工作,如任務(wù)的延時(shí)、等待操作等。在時(shí)鐘中斷中將查詢處于等待狀態(tài)的任務(wù),判斷是否延時(shí)結(jié)束,否則將重新進(jìn)行任務(wù)調(diào)度。可以通過調(diào)用OSIntEnter()。OS_SAVE_SP(),OSTimeTick()和OSIntExit()四個(gè)函數(shù)進(jìn)行實(shí)現(xiàn)。OSintEnter()函數(shù)通知μC/OS-Ⅱ進(jìn)入中斷服務(wù)子程序,OS_SAVE_SP()函數(shù)用來保存堆棧指針,OSTimeTick()函數(shù)給要求延時(shí)若干時(shí)鐘節(jié)拍的任務(wù)延遲計(jì)數(shù)器減1,當(dāng)反復(fù)運(yùn)行該程序后,計(jì)數(shù)器為0時(shí),則表明該任務(wù)進(jìn)入了就緒狀態(tài),OSintExit()函數(shù)標(biāo)志時(shí)鐘節(jié)拍中斷服務(wù)子程序結(jié)束。
之后最重要的一點(diǎn),就是要將中斷服務(wù)子程序OSTickISR()與任務(wù)級(jí)任務(wù)切換函數(shù)OSCtxSw()添加到系統(tǒng)中斷向量表的相應(yīng)位置中。這里使用的是實(shí)時(shí)時(shí)鐘中斷模塊(RTI)來實(shí)現(xiàn)時(shí)鐘中斷的產(chǎn)生,因此要將OSTickISR()連接到向量表RTI位置。OSCtxSw()函數(shù)是利用軟中斷來實(shí)現(xiàn)任務(wù)的切換功能的,因此軟中斷服務(wù)子程序的向量地址必須指向OSCtxSw()。
在進(jìn)行上述程序編寫后,下載代碼到硬件中,μC/OS-Ⅱ就可以在本系統(tǒng)上實(shí)現(xiàn)運(yùn)行了。
3 通信程序設(shè)計(jì)
利用任務(wù)形式來解決POC狀態(tài)的檢測(cè)問題,不僅可以提高程序效率以及避免死循環(huán)現(xiàn)象,同時(shí),還可以建立通信故障檢測(cè)報(bào)警任務(wù),在不同的通信狀態(tài)下,對(duì)駕駛員提供故障信息,方便處理。
線控轉(zhuǎn)向程序結(jié)構(gòu)包括系統(tǒng)初始化、通信控制、數(shù)據(jù)采集和控制算法四大部分。這里只對(duì)其中的系統(tǒng)初始化及通信控制部分進(jìn)行了設(shè)計(jì)。
3.1 系統(tǒng)初始化
在主程序main()中,首先對(duì)MC9S12XF512芯片進(jìn)行初始化,包括:時(shí)鐘初始化、I/O口初始化、A/D模塊初始化、PWM模塊初始化以及FlexRay協(xié)議配置初始化。之后,調(diào)用OSInit()函數(shù)對(duì)μC/OS-Ⅱ操作系統(tǒng)進(jìn)行初始化。接著創(chuàng)建三個(gè)任務(wù),按照優(yōu)先級(jí)順序9、1l、13,分別為FlexRay通信啟動(dòng)任務(wù)、數(shù)據(jù)接收發(fā)送任務(wù)和故障檢測(cè)報(bào)警任務(wù),由這三個(gè)任務(wù)實(shí)現(xiàn)線控轉(zhuǎn)向系統(tǒng)的通信部分功能,其他部分功能可通過創(chuàng)建其他任務(wù)進(jìn)行擴(kuò)展。最后調(diào)用OSStart()啟動(dòng)內(nèi)核運(yùn)行,讓任務(wù)在操作系統(tǒng)的管理與調(diào)度下運(yùn)行。
評(píng)論