車載電源IC發(fā)展技術(shù)要求及EMC、散熱對(duì)策
3.工藝的發(fā)展及其課題
工藝的微細(xì)化曾遵從摩爾定律迅速發(fā)展,但如今已不見以往的顯著發(fā)展態(tài)勢(shì)。
像電源IC這樣的產(chǎn)品,耗電量較大的電源IC其功率損耗也大。其損耗成為熱量,從IC經(jīng)由PCB和封裝散發(fā)到外部(圖3)。
圖3:封裝結(jié)構(gòu)圖(熱阻)
熱阻不僅受封裝的材質(zhì)、引線框架的材質(zhì)、固定芯片與框架的接合材質(zhì)影響,受到框架形狀和芯片尺寸的影響也很大。
遵循摩爾定律,芯片尺寸越來越小,使熱阻變高,即使消耗與以往相同的電量,芯片的溫升也會(huì)增大。
隨著車載控制設(shè)備的電子控制/電動(dòng)化發(fā)展,在被稱為“平臺(tái)化”的背景下,電子元器件的商品化也自然而然不斷發(fā)展。所以,即使熱阻增高,降低芯片尺寸也是必然選擇。
為解決這些問題,進(jìn)行控制設(shè)備的綜合散熱設(shè)計(jì),使IC與PCB熱阻平衡變得越來越重要。
4.車載EMC對(duì)策例
如前所述,車載電子元器件必須符合CISPR25(發(fā)射干擾:產(chǎn)生干擾側(cè)的標(biāo)準(zhǔn))和ISO11452(抗干擾:受干擾影響側(cè)的標(biāo)準(zhǔn))等電磁兼容相關(guān)的各種標(biāo)準(zhǔn)。
這些噪音干擾根據(jù)傳輸路徑,可分為直接經(jīng)布線傳輸?shù)膫鲗?dǎo)噪音和經(jīng)空氣傳輸?shù)妮椛湫栽胍簦▓D4,5)。
圖4:同一PCB板上的噪音傳輸路徑
圖5:來自PCB板間及PCB板外部的噪音傳輸路徑
以Π型濾波器為做為基本型,針對(duì)未滿足標(biāo)準(zhǔn)的頻段,并聯(lián)阻抗較低的旁路電容。
下面的應(yīng)用實(shí)例DC/DC轉(zhuǎn)換器IC“BD90640EFJ-C”就是采用以上這種噪音對(duì)策應(yīng)用示例。
在圖7的示例中,對(duì)于AM頻段噪音,使用Π型濾波器使之衰減;對(duì)于CB~FM頻段噪音,選用諧振頻率在20MHz左右的旁路電容使之衰減,以滿足CISPR25-Class5(圖6)要求。
圖6:CISPR25傳輸干擾的極限值
圖7:通過輸入濾波器作為傳導(dǎo)噪音對(duì)策示例
最后,請(qǐng)注意,由于作為噪音對(duì)策所使用的電容的頻率特性因電壓、溫度依存性、尺寸及零部件廠家不同而不同,因此需要在使用前向廠家進(jìn)行確認(rèn)。
評(píng)論