射頻集成電路設(shè)計(jì)中的常見問題及方案解析
射頻(RF)PCB設(shè)計(jì),在目前公開出版的理論上具有很多不確定性,常被形容為一種“黑色藝術(shù)”。通常情況下,對于微波以下頻段的電路(包括低頻和低頻數(shù)字電路),在全面掌握各類設(shè)計(jì)原則前提下的仔細(xì)規(guī)劃是一次性成功設(shè)計(jì)的保證。對于微波以上頻段和高頻的PC類數(shù)字電路,則需要2~3個版本的PCB方能保證電路品質(zhì)。而對于微波以上頻段的RF電路,則往往需要更多版本的PCB設(shè)計(jì)并不斷完善,而且是在具備相當(dāng)經(jīng)驗(yàn)的前提下。由此可知RF電設(shè)計(jì)上的困難。
本文引用地址:http://www.ex-cimer.com/article/201712/372492.htm數(shù)字電路模塊和模擬電路模塊之間的干擾
如果模擬電路(射頻)和數(shù)字電路單獨(dú)工作,可能各自工作良好。但是,一旦將二者放在同一塊電路板上使用同一個電源一起工作,整個系統(tǒng)很可能就不穩(wěn)定。這主要是因?yàn)閿?shù)字信號頻繁地在地和正電源(》3 V)之間擺動,而且周期特別短,常常是納秒級的。由于較大的振幅和較短的切換時間,使得這些數(shù)字信號包含大量且獨(dú)立于切換頻率的高頻成分。在模擬部分,從無線調(diào)諧回路傳到無線設(shè)備接收部分的信號一般小于1μV。因此數(shù)字信號與射頻信號之間的差別會達(dá)到120dB。顯然,如果不能使數(shù)字信號與射頻信號很好地分離,微弱的射頻信號可能遭到破壞,這樣一來,無線設(shè)備工作性能就會惡化,甚至完全不能工作。
供電電源的噪聲干擾
射頻電路對于電源噪聲相當(dāng)敏感,尤其是對毛刺電壓和其他高頻諧波。微控制器會在每個內(nèi)部時鐘周期內(nèi)短時間突然吸入大部分電流,這是由于現(xiàn)代微控制器都采用CMOS工藝制造。因此,假設(shè)一個微控制器以1MHz的內(nèi)部時鐘頻率運(yùn)行,它將以此頻率從電源提取電流。如果不采取合適的電源去耦,必將引起電源線上的電壓毛刺。如果這些電壓毛刺到達(dá)電路RF部分的電源引腳,嚴(yán)重時可能導(dǎo)致工作失效。
不合理的地線
如果RF電路的地線處理不當(dāng),可能產(chǎn)生一些奇怪的現(xiàn)象。對于數(shù)字電路設(shè)計(jì),即使沒有地線層,大多數(shù)數(shù)字電路功能也表現(xiàn)良好。而在RF頻段,即使一根很短的地線也會如電感器一樣作用。粗略地計(jì)算,每毫米長度的電感量約為1nH,433MHz時10mmPCB線路的感抗約27Ω。如果不采用地線層,大多數(shù)地線將會較長,電路將無法具有設(shè)計(jì)的特性。
天線對其他模擬電路部分的輻射干擾
在PCB電路設(shè)計(jì)中,板上通常還有其他模擬電路。例如,許多電路上都有模/數(shù)轉(zhuǎn)換(ADC)或數(shù)/模轉(zhuǎn)換器(DAC)。射頻發(fā)送器的天線發(fā)出的高頻信號可能會到達(dá)ADC的模擬輸入端。因?yàn)槿魏坞娐肪€路都可能如天線一樣發(fā)出或接收RF信號。如果ADC輸入端的處理不合理,RF信號可能在ADC輸入的ESD二極管內(nèi)自激,從而引起ADC偏差。
RF電路設(shè)計(jì)原則及方案
RF布局概念
在設(shè)計(jì)RF布局時,必須優(yōu)先滿足以下幾個總原則:
(1)盡可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔離開來,簡單地說就是讓高功率RF發(fā)射電路遠(yuǎn)離低功率RF接收電路;
(2)確保PCB板上高功率區(qū)至少有一整塊地,最好上面沒有過孔,當(dāng)然,銅箔面積越大越好;
(3)電路和電源去耦同樣也極為重要;
(4)RF輸出通常需要遠(yuǎn)離RF輸入;
(5)敏感的模擬信號應(yīng)該盡可能遠(yuǎn)離高速數(shù)字信號和RF信號。
物理分區(qū)和電氣分區(qū)設(shè)計(jì)原則
設(shè)計(jì)分區(qū)可以分解為物理分區(qū)和電氣分區(qū)。物理分區(qū)主要涉及元器件布局、方向和屏蔽等;電氣分區(qū)可以繼續(xù)分解為電源分配、RF走線、敏感電路和信號以及接地等的分區(qū)。
物理分區(qū)原則
(1)元器件位置布局原則。元器件布局是實(shí)現(xiàn)一個優(yōu)秀RF設(shè)計(jì)的關(guān)鍵,最有效的技術(shù)是首先固定位于RF路徑上的元器件并調(diào)整其方向,以便將RF路徑的長度減到最小,使輸入遠(yuǎn)離輸出,并盡可能遠(yuǎn)地分離高功率電路和低功率電路。
(2)PCB堆疊設(shè)計(jì)原則。最有效的電路板堆疊方法是將主接地面(主地)安排在表層下的第二層,并盡可能將RF線布置在表層上。將RF路徑上的過孔尺寸減到最小,這不僅可以減少路徑電感,而且還可以減少主地上的虛焊點(diǎn),并可減少RF能量泄漏到層疊板內(nèi)其他區(qū)域的機(jī)會。
(3)射頻器件及其RF布線布局原則。在物理空間上,像多級放大器這樣的線性電路通常足以將多個RF區(qū)之間相互隔離開來,但是雙工器、混頻器和中頻放大器/混頻器總是有多個RF/IF信號相互干擾,因此必須小心地將這一影響減到最小。RF與IF跡線應(yīng)盡可能十字交叉,并盡可能在它們之間隔一塊地。正確的RF路徑對整塊PCB的性能非常重要,這就是元器件布局通常在蜂窩電話PCB設(shè)計(jì)中占大部分時間的原因。
(4)降低高/低功率器件干擾耦合的設(shè)計(jì)原則。在蜂窩電話PCB上,通常可以降低噪音放大器電路放在PCB的某一面,而將高功率放大器放在另一面,并最終通過雙工器把它們在同一面上連接到RF端和基帶處理器端的天線上。要用技巧來確保通孔不會把RF能量從板的一面?zhèn)鬟f到另一面,常用的技術(shù)是在二面都使用盲孔??梢酝ㄟ^將通孔安排在PCB板二面都不受RF干擾的區(qū)域來將通孔的不利影響減到最小。
電氣分區(qū)原則
(1)功率傳輸原則。蜂窩電話中大多數(shù)電路的直流電流都相當(dāng)小,因此,布線寬度通常不是問題。不過,必須為高功率放大器的電源單獨(dú)設(shè)定一條盡可能寬的大電流線,以將傳輸壓降減到最低。為了避免太多電流損耗,需要采用多個通孔來將電流從某一層傳遞到另一層。
(2)高功率器件的電源去耦。如果不能在高功率放大器的電源引腳端對它進(jìn)行充分的去耦,那么高功率噪聲將會輻射到整塊板上,并帶來多重的問題。高功率放大器的接地相當(dāng)關(guān)鍵,經(jīng)常需要為其設(shè)計(jì)一個金屬屏蔽罩。
(3)RF輸入/輸出隔離原則。在大多數(shù)情況下,同樣關(guān)鍵的是確保RF輸出遠(yuǎn)離RF輸入。這也適用于放大器、緩沖器和濾波器。在最壞情況下,如果放大器和緩沖器的輸出以適當(dāng)?shù)南辔缓驼穹答伒剿鼈兊妮斎攵耍敲此鼈兙陀锌赡墚a(chǎn)生自激振蕩。在最好情況下,它們將能在任何溫度和電壓條件下穩(wěn)定地工作。實(shí)際上,它們可能會變得不穩(wěn)定,并將噪音和互調(diào)信號添加到RF信號上。
(4)濾波器輸入/輸出隔離原則。如果射頻信號線不得不從濾波器的輸入端繞回輸出端,那么,這可能會嚴(yán)重?fù)p害濾波器的帶通特性。為了使輸入和輸出良好地隔離,首先必須在濾波器周圍布置一圈地,其次濾波器下層區(qū)域也要布置一塊地,并與圍繞濾波器的主地連接起來。把需要穿過濾波器的信號線盡可能遠(yuǎn)離濾波器引腳也是個好方法。此外,整塊板上各個地方的接地都要十分小心,否則可能會在不知覺之中引入一條不希望發(fā)生的耦合通道。
(5)數(shù)字電路和模擬電路隔離。在所有PCB設(shè)計(jì)中,盡可能將數(shù)字電路遠(yuǎn)離模擬電路是一條總的原則,它同樣適用于RF PCB設(shè)計(jì)。公共模擬地和用于屏蔽和隔開信號線的地通常是同等重要的,由于疏忽而引起的設(shè)計(jì)更改將可能導(dǎo)致即將完成的設(shè)計(jì)又必須推倒重來。同樣應(yīng)使RF線路遠(yuǎn)離模擬線路和一些很關(guān)鍵的數(shù)字信號,所有的RF走線、焊盤和元件周圍應(yīng)盡可能多地填接地銅皮,并盡可能與主地相連。如果RF走線必須穿過信號線,那么盡量在它們之間沿著RF走線布置一層與主地相連的地。如果不可能,一定要保證它們是十字交叉的,這可將容性耦合減到最小,同時盡可能在每根RF走線周圍多布一些地,并把它們連到主地。此外,將并行RF走線之間的距離減到最小可使感性耦合減到最小。
評論