車載GPS定向天線云臺隨動系統(tǒng)設(shè)計(jì)與研究
前言
在無線圖像傳輸通信系統(tǒng)中,要獲得較高的接收增益,需要定向接收天線對準(zhǔn)信號發(fā)射源。本文針對由指揮車和被控車輛組成的應(yīng)用平臺,利用磁羅盤和GPS的定向、定位技術(shù)設(shè)計(jì)了車載定向天線云臺隨動系統(tǒng)。在該系統(tǒng)中,定向接收天線和磁羅盤固定在指揮車云臺上,GPS接收機(jī)天線安裝在指揮車上。通過隨動系統(tǒng)控制云臺轉(zhuǎn)動,使定向接收天線實(shí)時對準(zhǔn)移動中的被控車輛,以達(dá)到圖像的最佳接收效果。
系統(tǒng)結(jié)構(gòu)設(shè)計(jì)
該系統(tǒng)主要由GPS接收機(jī)、磁羅盤、定向天線云臺和以PIC18F458單片機(jī)為核心的測控計(jì)算機(jī)組成,共分為數(shù)據(jù)采集、隨動控制和機(jī)械傳動三部分,系統(tǒng)的結(jié)構(gòu)示意圖如圖1所示。
系統(tǒng)硬件設(shè)計(jì)及算法實(shí)現(xiàn)
系統(tǒng)硬件設(shè)計(jì)
該系統(tǒng)硬件的關(guān)鍵部分是以PIC18F458單片機(jī)為核心的測控計(jì)算機(jī)。PIC18F458是美國微芯公司推出的采用RISC設(shè)計(jì)的增強(qiáng)型單片機(jī),它指令周期短、處理能力強(qiáng)、運(yùn)算能力高,并帶有豐富的外圍模塊。
測控計(jì)算機(jī)具有豐富的外部接口,在本系統(tǒng)中,用到了兩路串口,一路D/A輸出。測控計(jì)算機(jī)的配置框圖如圖3所示。
外圍兩路RS232串口分別用于磁羅盤、指揮車監(jiān)控計(jì)算機(jī)(工控機(jī))與測控計(jì)算機(jī)通信。測控計(jì)算機(jī)的數(shù)字量控制信息經(jīng)D/A轉(zhuǎn)換器,作為定向天線云臺的模擬量轉(zhuǎn)動信號,達(dá)到定向天線云臺系統(tǒng)的隨動功能。
方位角計(jì)算
在隨動功能的實(shí)現(xiàn)中,天線的指向由指揮車和被控車輛決定,根據(jù)兩車接收到的GPS數(shù)據(jù)來計(jì)算定向天線的方位角。方位角是指以天線旋轉(zhuǎn)軸為軸,以地理北極為起始點(diǎn),順時針方向旋轉(zhuǎn)到天線指向的方位所經(jīng)過的角度。當(dāng)指揮車上的定向天線對準(zhǔn)目標(biāo)時,此時圖像的傳輸效果最佳。
按照地球模型畫出GPS方位角圖示,如圖4所示。
圖中,A為指揮車,B為被控車輛。它們的坐標(biāo)分別為(λ1,φ1),(λ2,φ2),θ1為兩車的經(jīng)度之差,θ2為兩車的緯度之差,O為地心,O1為被控車輛的緯度平面圓的圓心,R為地球半徑,r為被控車輛的緯度平面圓的半徑。其中,θ1=∣λ1-λ2∣,θ2=∣φ1-φ2∣。
方位角的計(jì)算:
由于指揮車和被控車輛的方位不同,方位角T取值如下:
?。?)指揮車在目標(biāo)的東北方向(包括北)時,T=π+∠BAC
?。?)指揮車在目標(biāo)的西北方向(包括西)時,T=π-∠BAC
?。?)指揮車在目標(biāo)的西南方向(包括南)時,T=∠BAC
?。?)指揮車在目標(biāo)的東南方向(包括東)時,T=2π-∠BAC
T∈[0°,360°]
PID控制算法
在隨動控制中,采用數(shù)字PID技術(shù),控制規(guī)律通過執(zhí)行固化到測量控制計(jì)算機(jī)中的控制程序?qū)崿F(xiàn)。在實(shí)際使用中,要求系統(tǒng)動態(tài)性能好、控制時間短、超調(diào)量小。
PID控制器由比例控制器、積分控制器、微分控制器線性組合而成,共同對被控對象進(jìn)行控制,其控制表達(dá)式為: u(k)=K_{P}?e(k)+Ki?∑e(k)+
Kd?[(e(k)-e( k-1)]。本系統(tǒng)主流程圖如圖5所示。
結(jié)束語
該車載定向天線云臺隨動系統(tǒng)實(shí)現(xiàn)了天線的隨動功能,接近了通信系統(tǒng)中定向天線對準(zhǔn)目標(biāo)源的理想狀態(tài),經(jīng)過野外現(xiàn)場測試,該系統(tǒng)動作迅速、超調(diào)量小,達(dá)到了設(shè)計(jì)要求,取得了較滿意的使用效果,在實(shí)際應(yīng)用中具有較大的參考價(jià)值。
pid控制器相關(guān)文章:pid控制器原理
評論