小波變換和motion信號處理:第一篇
這是《小波變換和motion信號處理》系列的第一篇,基礎(chǔ)普及。第二篇我準備寫深入小波的東西,第三篇講解應(yīng)用。
本文引用地址:http://www.ex-cimer.com/article/247253.htm記得我還在大四的時候,在申請出國和保研中猶豫了好一陣,骨子里的保守最后讓我選擇了先保研。當(dāng)然后來也退學(xué)了,不過這是后話。當(dāng)時保研就要找老板,實驗室,自己運氣還不錯,進了一個在本校很牛逼的實驗室干活路。我們實驗室主要是搞圖像的,實力在全國也是很強的,進去后和師兄師姐聊,大家都在搞什么小波變換,H264之類的。當(dāng)時的我心思都不在這方面,盡搞什么操作系統(tǒng)移植,ARM+FPGA這些東西了。對小波變換的認識也就停留在神秘的“圖像視頻壓縮算法之王”上面。
后來我才發(fā)現(xiàn),在別的很廣泛的領(lǐng)域中,小波也逐漸開始流行。比如話說很早以前,我們接觸的信號頻域處理基本都是傅立葉和拉普拉斯的天下。但這些年,小波在信號分析中的逐漸興盛和普及。這讓人不得不感到好奇,是什么特性讓它在圖象壓縮,信號處理這些關(guān)鍵應(yīng)用中更得到信賴呢?說實話,我還在國內(nèi)的時候,就開始好奇這個問題了,于是放狗搜,放毒搜,找遍了中文講小波變換的科普文章,發(fā)現(xiàn)沒幾個講得清楚的,當(dāng)時好奇心沒那么重,也不是搞這個研究的,懶得找英文大部頭論文了,于是作罷。后來來了這邊,有些項目要用信號處理,不得已接觸到一些小波變換的東西,才開始硬著頭皮看??戳艘恍┎牧?,聽了一些課,才發(fā)現(xiàn),還是那個老生常談的論調(diào):國外的技術(shù)資料和國內(nèi)真TNND不是一個檔次的。同樣的事情,別人說得很清楚,連我這種并不聰明的人也看得懂; 國內(nèi)的材料則繞來繞去講得一塌糊涂,除了少數(shù)天才沒幾個人能在短時間掌握的。
牢騷就不繼續(xù)發(fā)揮了。在這個系列文章里,我希望能簡單介紹一下小波變換,它和傅立葉變換的比較,以及它在移動平臺做motion detection的應(yīng)用。如果不做特殊說明,均以離散小波為例子。考慮到我以前看中文資料的痛苦程度,我會盡量用簡單,但是直觀的方式去介紹。有些必要的公式是不能少的,但我盡量少用公式,多用圖。另外,我不是一個好的翻譯者,所以對于某些實在翻譯不清楚的術(shù)語,我就會直接用英語。我并不claim我會把整個小波變換講清楚,這是不可能的事,我只能盡力去圍繞要點展開,比如小波變換相對傅立葉變換的好處,這些好處的原因是什么,小波變換的幾個根本性質(zhì)是什么,背后的推導(dǎo)是什么。我希望達到的目的就是一個小波變換的初學(xué)者在看完這個系列之后,就能用matlab或者別的工具對信號做小波變換的基本分析并且知道這個分析大概是怎么回事。
最后說明,我不是研究信號處理的專業(yè)人士,所以文中必有疏漏或者錯誤,如發(fā)現(xiàn)還請不吝賜教。
要講小波變換,我們必須了解傅立葉變換。要了解傅立葉變換,我們先要弄清楚什么是”變換“。很多處理,不管是壓縮也好,濾波也好,圖形處理也好,本質(zhì)都是變換。變換的是什么東西呢?是基,也就是basis。如果你暫時有些遺忘了basis的定義,那么簡單說,在線性代數(shù)里,basis是指空間里一系列線性獨立的向量,而這個空間里的任何其他向量,都可以由這些個向量的線性組合來表示。那basis在變換里面啥用呢?比如說吧,傅立葉展開的本質(zhì),就是把一個空間中的信號用該空間的某個basis的線性組合表示出來,要這樣表示的原因,是因為傅立葉變換的本質(zhì),是。小波變換自然也不例外的和basis有關(guān)了。再比如你用Photoshop去處理圖像,里面的圖像拉伸,反轉(zhuǎn),等等一系列操作,都是和basis的改變有關(guān)。
既然這些變換都是在搞基,那我們自然就容易想到,這個basis的選取非常重要,因為basis的特點決定了具體的計算過程。一個空間中可能有很多種形式的basis,什么樣的basis比較好,很大程度上取決于這個basis服務(wù)于什么應(yīng)用。比如如果我們希望選取有利于壓縮的話,那么就希望這個basis能用其中很少的向量來最大程度地表示信號,這樣即使把別的向量給砍了,信號也不會損失很多。而如果是圖形處理中常見的線性變換,最省計算量的完美basis就是eigenvector basis了,因為此時變換矩陣T對它們的作用等同于對角矩陣( Tv_n = av_n,a是eigenvalue )??偟膩碚f,拋開具體的應(yīng)用不談,所有的basis,我們都希望它們有一個共同的特點,那就是,容易計算,用最簡單的方式呈現(xiàn)最多的信號特性。
好,現(xiàn)在我們對變換有了基本的認識,知道他們其實就是在搞基。當(dāng)然,搞基也是分形式的,不同的變換,搞基的妙處各有不同。接下來先看看,傅立葉變換是在干嘛。
傅立葉級數(shù)最早是Joseph Fourier 這個人提出的,他發(fā)現(xiàn),這個basis不僅僅存在與vector space,還存在于function space。這個function space本質(zhì)上還是一個linear vector space,可以是有限的,可以是無限的,只不過在這個空間里,vector就是function了,而對應(yīng)的標量就是實數(shù)或者復(fù)數(shù)。在vector space里,你有vector v可以寫成vector basis的線性組合,那在function space里,function f(x)也可以寫成對應(yīng)function basis的線性組合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是無窮盡的,因為我的function space的維度是無窮的。好,具體來說,那就是現(xiàn)在我們有一個函數(shù),f(x)。我們希望將它寫成一些cos函數(shù)和一些sin函數(shù)的形式,像這樣
again,這是一個無限循環(huán)的函數(shù)。其中的1,cosx, sinx, cos2x …..這些,就是傅立葉級數(shù)。傅立葉級數(shù)應(yīng)用如此廣泛的主要原因之一,就是它們這幫子function basis是正交的,這就是有趣的地方了。為什么function basis正交如此重要呢?我們說兩個vector正交,那就是他倆的內(nèi)積為0。那對于function basis呢?function basis怎么求內(nèi)積呢?
現(xiàn)在先復(fù)習(xí)一下vector正交的定義。我們說兩個vector v,w如果正交的話,應(yīng)符合:
那什么是function正交呢?假設(shè)我們有兩個函數(shù)f(x)和g(x),那是什么?我們遵循vector的思路去想,兩個vector求內(nèi)積,就是把他們相同位置上對應(yīng)的點的乘積做一個累加。那移過來,就是對每一個x點,對應(yīng)的f和g做乘積,再累加。不過問題是,f和g都是無限函數(shù)阿,x又是一個連續(xù)的值。怎么辦呢?向量是離散的,所以累加,函數(shù)是連續(xù)的,那就是…….積分!
我們知道函數(shù)內(nèi)積是這樣算的了,自然也就容易證明,按照這個形式去寫的傅立葉展開,這些級數(shù)確實都是兩兩正交的。證明過程這里就不展開了。好,下一個問題就是,為什么它們是正交basis如此重要呢?這就牽涉到系數(shù)的求解了。我們研究了函數(shù)f,研究了級數(shù),一堆三角函數(shù)和常數(shù)1,那系數(shù)呢?a0, a1, a2這些系數(shù)該怎么確定呢?好,比如我這里準備求a1了。我現(xiàn)在知道什么?信號f(x)是已知的,傅立葉級數(shù)是已知的,我們怎么求a1呢?很簡單,把方程兩端的所有部分都求和cosx的內(nèi)積,即:
然后我們發(fā)現(xiàn),因為正交的性質(zhì),右邊所有非a1項全部消失了,因為他們和cosx的內(nèi)積都是0!所有就簡化為
這樣,a1就求解出來了。到這里,你就看出正交的奇妙性了吧:)
好,現(xiàn)在我們知道,傅立葉變換就是用一系列三角波來表示信號方程的展開,這個信號可以是連續(xù)的,可以是離散的。傅立葉所用的function basis是專門挑選的,是正交的,是利于計算coefficients的。但千萬別誤解為展開變換所用的basis都是正交的,這完全取決于具體的使用需求,比如泰勒展開的basis就只是簡單的非正交多項式。
有了傅立葉變換的基礎(chǔ),接下來,我們就看看什么是小波變換。首先來說說什么是小波。所謂波,就是在時間域或者空間域的震蕩方程,比如正弦波,就是一種波。什么是波分析?針對波的分析拉(囧)。并不是說小波分析才屬于波分析,傅立葉分析也是波分析,因為正弦波也是一種波嘛。那什么是小波呢?這個”小“,是針對傅立葉波而言的。傅立葉所用的波是什么?正弦波,這玩意以有著無窮的能量,同樣的幅度在整個無窮大區(qū)間里面振蕩,像下面這樣:
那小波是什么呢?是一種能量在時域非常集中的波。它的能量是有限的,而且集中在某一點附近。比如下面這樣:
這種小波有什么好處呢?它對于分析瞬時時變信號非常有用。它有效的從信號中提取信息,通過伸縮和平移等運算功能對函數(shù)或信號進行多尺度細化分析,解決了傅立葉變換不能解決的許多困難問題。恩,以上就是通常情況下你能在國內(nèi)網(wǎng)站上搜到的小波變換文章告訴你的。但為什么呢?這是我希望在這個系列文章中講清楚的。不過在這篇文章里,我先點到為止,把小波變換的重要特性以及優(yōu)點cover了,在下一篇文章中再具體推導(dǎo)這些特性。
小波變換的本質(zhì)和傅立葉變換類似,也是用精心挑選的basis來表示信號方程。每個小波變換都會有一個mother wavelet,我們稱之為母小波,同時還有一個scaling function,中文是尺度函數(shù),也被成為父小波。任何小波變換的basis函數(shù),其實就是對這個母小波和父小波縮放和平移后的集合。下面這附圖就是某種小波的示意圖:
從這里看出,這里的縮放倍數(shù)都是2的級數(shù),平移的大小和當(dāng)前其縮放的程度有關(guān)。這樣的好處是,小波的basis函數(shù)既有高頻又有低頻,同時還覆蓋了時域。對于這點,我們會在之后詳細闡述。
小波展開的形式通常都是這樣(注意,這個只是近似表達,嚴謹?shù)恼归_形式請參考第二篇):
其中的
模擬信號相關(guān)文章:什么是模擬信號
評論