<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > 高速PCB設(shè)計中的時序分析及仿真策略解析

          高速PCB設(shè)計中的時序分析及仿真策略解析

          作者: 時間:2014-08-04 來源:網(wǎng)絡(luò) 收藏

            式(2)中,第一個括號內(nèi)仍然是芯片CLOCK BUFFER輸出之間的最大相位差;第二個括號內(nèi)繼續(xù)可以理解為芯片輸出的兩個時鐘CLKA、CLKB分別到達(dá)RECEIVER和DRIVER的最大延時差;要滿足數(shù)據(jù)的保持時間,實際可調(diào)整的部分也只有兩項,即Tflt_CLKB_MIN-Tflt_CLKA_MAX和Tflt_DATA_SWITCH_DELAY_MIN。單從滿足保持時間的角度而言,Tflt_CLKB_MIN和Tflt_DATA_SWITCH_DELAY_MIN應(yīng)盡可能大,而Tflt_CLKA_MAX則要盡可能小。也就是說,若欲滿足保持時間,就要使接收時鐘早點來,而數(shù)據(jù)則要晚點無效(invalid)。

          本文引用地址:http://www.ex-cimer.com/article/256428.htm

            為了正確無誤地接收數(shù)據(jù),必須綜合考慮數(shù)據(jù)的建立時間和保持時間,即同時滿足(1)式和(2)式。分析這兩個不等式可以看出,調(diào)整的途徑只有三個:發(fā)送時鐘延時、接收時鐘延時和數(shù)據(jù)的延時。調(diào)整方案可這樣進(jìn)行:首先假定發(fā)送時鐘延時嚴(yán)格等于接收時鐘延時,即Tflt_CLKA_MIN-Tflt_CLKB_MAX =0和Tflt_CLKB_MIN-Tflt_CLKA_MAX =0(后文將對這兩個等式的假設(shè)產(chǎn)生的偏差進(jìn)行考慮),然后通過仿真可以得出數(shù)據(jù)的延時范圍,如果數(shù)據(jù)延時無解則返回上述兩個等式,調(diào)整發(fā)送時鐘延時或接收時鐘延時。下面是寬帶網(wǎng)交換機(jī)中GLINK總線公共時鐘同步數(shù)據(jù)收發(fā)的例子:首先假定發(fā)送時鐘延時嚴(yán)格等于接收時鐘延時,然后確定數(shù)據(jù)的延時范圍,代入各參數(shù),(1)和(2)式分別變?yōu)椋?/p>

            1.5-Tflt_DATA_SETTLE_DELAY_MAX-Tmargin>0

            0.5+Tflt_DATA_SWITCH_DELAY_MIN-Tmargin>0

            在不等式提示下,結(jié)合布局實際,確定Tflt_DATA_SETTLE_DELAY_MAX<1.1;tflt_data_switch_delay_min>-0.1,剩下0.4ns的余量分配給了兩個時鐘的時差和Tmargin。在SPECCTRAQUEST中提取拓?fù)洳⑦M(jìn)行信號完整性仿真,進(jìn)而確定各段線長及拓?fù)浣Y(jié)構(gòu)。對此結(jié)構(gòu)(共12種組合)進(jìn)行全掃描仿真,得到Tflt_DATA_SETTLE_DELAY_MAX=1.0825 Tflt_DATA_SWITCH_DELAY_MIN =-0.0835004,符合確定的1.1和-0.1的范圍指標(biāo)。由此可以得出GLINK總線數(shù)據(jù)線的約束規(guī)則:①匹配電阻到發(fā)送端的延時不應(yīng)大于0.1ns;②數(shù)據(jù)線必須以0.1ns進(jìn)行匹配,即每個數(shù)據(jù)線都必須在0.65ns~0.75ns之間。有了上述的約束規(guī)則就可以指導(dǎo)布線了。

            下面再考慮硬性規(guī)定 Tflt_CLKA_MIN-Tflt_CLKB_MAX=0和Tflt_CLKB_MIN-Tflt_CLKA_MAX=0帶來的影響。事先約束發(fā)送時鐘和接收時鐘完全等長(在實際操作中以0.02ns進(jìn)行匹配)在CADENCE環(huán)境下,進(jìn)行時鐘仿真,得到結(jié)果:|Tflt_CLKA_MIN-Tflt_CLKB_MAX|<0.2和|tflt_clkb_min-tflt_clka_max|<0.2。可見留給tmargin的余量為0.2ns。

            最終的仿真結(jié)果是:① 匹配電阻到發(fā)送端的延時不應(yīng)大于0.1ns;②數(shù)據(jù)線以0.1ns進(jìn)行匹配,即每個數(shù)據(jù)線都必須在0.65ns~0.75ns之間;③發(fā)送時鐘和接收時鐘以0.02ns匹配等長;④Tmargin=0.2ns。有了上述拓?fù)浣Y(jié)構(gòu)樣板和約束規(guī)則就可以將SPECCTRAQUEST或ALLEGRO導(dǎo)入到CONSTRAINS MANAGER中。當(dāng)這些設(shè)計約束規(guī)則設(shè)置好后,就可以利用自動布線器進(jìn)行規(guī)則驅(qū)動自動布線或人工調(diào)線。

            2 源同步關(guān)系及仿真實例

            

           

            所謂源同步就是指時鐘選通信號CLK由驅(qū)動芯片伴隨發(fā)送數(shù)據(jù)一起發(fā)送,它并不象公共時鐘同步那樣采用獨立的時鐘源。在源同步數(shù)據(jù)收發(fā)中,數(shù)據(jù)首先發(fā)向接收端,經(jīng)稍短時間選通時鐘再發(fā)向接收端用于采樣鎖存這批數(shù)據(jù)。其示意圖如圖2所示。源同步的分析較公共時鐘同步較為簡單,分析方法很類似,下面直接給出分析公式:

            建立時間:Tvb_min+(Tflt_clk_min-Tflt_data_settle_delay_max)-Tsetup-Tmargin>0

            保持時間:Tva_min+(Tflt_data_switch_delay min-Tflt_clk _max)-Thold-Tmargin>0

            其中,Tvb為驅(qū)動端的建立時間,表示驅(qū)動端數(shù)據(jù)在時鐘有效前多少時間有效;Tva為發(fā)送端的保持時間,表示驅(qū)動端數(shù)據(jù)在時鐘有效后保持有效的時間;其他參量含義同前。下面以通信電路中很常見的TBI接口為例介紹源同步時序分析及仿真過程。TBI接口主要包括發(fā)送時鐘和10bit的發(fā)送數(shù)據(jù)、兩個接收時鐘和10bit接收數(shù)據(jù)。RBC0、RBC1為兩個接收時鐘,在千兆以太網(wǎng)中,這兩個時鐘頻率為62.5MHz,相差為180°,兩個時鐘的上升沿輪流用于鎖存數(shù)據(jù)。根據(jù)數(shù)據(jù)手冊的時序參數(shù),代入上式可得:

            2.5+Tflt_clk _min-Tflt_data__settle_delay_max -1-Tmargin>0

            1.5+Tflt_data__switch_delay min-Tflt_clk _max -0.5-Tmargin>0

            仿照前述分析方法:假設(shè)時鐘、數(shù)據(jù)信號線的飛行時間嚴(yán)格相等,即時鐘和數(shù)據(jù)完全匹配,然后分析它們不匹配帶來的影響。上式變?yōu)棣?/p>

            1.5-Tmargin>0

            1-Tmargin>0

            可見,無論是建立時間還是保持時間都有很大的余量。經(jīng)過仿真,發(fā)現(xiàn)數(shù)據(jù)和時鐘完全匹配等長(以0.02ns匹配為例),仍有0.3ns的差別,即

            Tflt_clk_min-Tflt_data_settle_delay_max<0.3

           ?。烼flt_data_switch_delay min-Tflt_clk_max<0.3

            取Tmargin=0.5ns得到時鐘和數(shù)據(jù)的匹配為0.2ns,即數(shù)據(jù)和時鐘的長度匹配不應(yīng)超過0.2ns。

            

           

            在實際仿真中首先就時鐘和數(shù)據(jù)的信號完整性進(jìn)行分析仿真,通過適當(dāng)?shù)亩私悠ヅ涞玫捷^好的接收波形。圖3是一組無源端匹配和有源端匹配時鐘線的不同仿真波形比較,從中可以看出首先進(jìn)行信號完整性仿真的必要性。

            在公共時鐘同步中,數(shù)據(jù)的發(fā)送和接收必須在一個時鐘周期內(nèi)完成。同時器件的延時和走線的延遲也限制了公共時鐘總線的最高理論工作頻率。故公共時鐘同步一般用于低于200MHz~300MHz的傳輸速率,高于這個速率的傳輸,一般應(yīng)引入源同步技術(shù)。源同步技術(shù)工作在相對的時鐘系統(tǒng)下,采用數(shù)據(jù)和時鐘并行傳輸,傳輸速率主要由數(shù)據(jù)和時鐘信號間的時差決定,這樣可以使系統(tǒng)達(dá)到更高的傳輸速率。筆者通過對寬帶以太網(wǎng)交換機(jī)主機(jī)和子卡板進(jìn)行信號完整性分析、時序分析及其仿真,大大縮短了產(chǎn)品的設(shè)計周期,通過分析仿真有效地解決了高速設(shè)計中出現(xiàn)的信號完整性、時序等方面的問題,充分保證了設(shè)計的質(zhì)量和設(shè)計速度,真正做到了板的一次通過。主板和子卡板目前已經(jīng)通過調(diào)試,并順利轉(zhuǎn)產(chǎn)。

          路由器相關(guān)文章:路由器工作原理


          路由器相關(guān)文章:路由器工作原理


          交換機(jī)相關(guān)文章:交換機(jī)工作原理


          晶振相關(guān)文章:晶振原理

          上一頁 1 2 下一頁

          關(guān)鍵詞: PCB 時鐘 時序

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();