耦合電感技術(shù)的優(yōu)勢(shì)
(式4)
本文引用地址:http://www.ex-cimer.com/article/273276.htm使用較熟悉、較方便的參數(shù),可根據(jù)參考文獻(xiàn)得出式4的品質(zhì)因數(shù)(FOM)9。
(式5)
式5表示FOM適用于特定的占空比D范圍:,其中系數(shù)k在范圍內(nèi)變化。
圖4所示為整個(gè)占空比范圍內(nèi),不同相數(shù)下電流紋波的減小。繪制電流紋波曲線時(shí),假設(shè)為理想耦合,L值相同。很明顯,增加耦合相數(shù)比較有利。
注意,對(duì)于采用分立元件的一般方案,針對(duì)給定輸出電流正確增加相數(shù)是一種在成本、尺寸方面都很有優(yōu)勢(shì)的方法。對(duì)于在單芯片集成多個(gè)開關(guān)相的商用化集成方案,也非常具有吸引力。
圖4也標(biāo)記了一個(gè)特殊的占空比:D = 0.15,對(duì)應(yīng)于實(shí)際例子VO = 1.8V,VIN = 12V。該條件繪制成圖5所示曲線,表明耦合系數(shù)ρ = Lm/Lk對(duì)抵消電流紋波的影響。觀察圖4,D = 0.15時(shí),分立電感的歸一化電流紋波大約為0.5,如圖5紅色曲線所示。相同條件下,如果耦合系數(shù)非常低,4相耦合電感具有相同的電流紋波;隨著耦合系數(shù)增大,電流紋波大幅減小,見圖5。注意,電流紋波在開始下降非??欤隈詈舷禂?shù)較大時(shí)達(dá)到平坦,建議耦合系數(shù)大約為3至5。利用這種方法,可實(shí)現(xiàn)最大程度的電流紋波抵消。
設(shè)計(jì)要點(diǎn)
假設(shè)我們從采用分立電感的多相降壓轉(zhuǎn)換器開始設(shè)計(jì),目標(biāo)是利用耦合電感提高系統(tǒng)性能。如果當(dāng)前的分立電感設(shè)計(jì)具有合理的電流紋波,轉(zhuǎn)換器效率也滿足客戶要求。對(duì)于耦合系數(shù)相對(duì)實(shí)用的4相降壓轉(zhuǎn)換器,從式5得到的預(yù)期FOM曲線如圖6所示。
觀察圖6,D確定在大約0.15,可將FOM = 4作為設(shè)計(jì)目標(biāo)。圖7所示為得到的電流紋波:紅色曲線表示分立電感L的初始電流紋波;兩條曲線表示不同耦合系數(shù)下L的電流紋波;最后兩條曲線表示L/4時(shí)的電流紋波。與預(yù)期一樣,D大約為0.15時(shí),分立電感L和耦合電感L/FOM = L/4的電流紋波相當(dāng)。
注意,根據(jù)應(yīng)用的不同,目標(biāo)占空比范圍可能不同,所選FOM可能高于D≈0.15時(shí)的數(shù)值。對(duì)于典型設(shè)計(jì),選擇FOM = 4,其中利用50nH耦合電感代替210nH高效分立電感,如圖3所示。正如預(yù)期,小得多的電感值必須滿足飽和電流指標(biāo)要求,所以耦合電感尺寸比傳統(tǒng)方案小得多。選項(xiàng)FOM = 4也使瞬態(tài)條件下的電流擺率提高4倍,所以輸出電容可減小大約4倍。
上述設(shè)計(jì)過(guò)程可應(yīng)用到任意相數(shù)。注意,所選FOM不一定單單為了改善瞬態(tài)性能。根據(jù)應(yīng)用條件和客戶要求優(yōu)先級(jí)的不同,可折中選擇FOM,例如直接減小電流紋波,進(jìn)而降低電路各處的傳導(dǎo)損耗。例如,選擇FOM = 4時(shí),可以只將電感值降低2.6倍(同時(shí)也減小了提高的瞬態(tài)性能),使電流紋波減小、效率提高1.5倍。
隨著耦合電感進(jìn)入不同的電源應(yīng)用領(lǐng)域,毫無(wú)疑問(wèn)將有許多不同客戶從該專有技術(shù)中受益。
參考文獻(xiàn):
[1] Wong PitLeong, Peng Xu, P. Yang, and F.C.Lee, “Performance improvements of interleaving VRMs with coupling inductors,” IEEE Trans. on Power Electronics, vol. 16, no. 4, pp. 499–507, 2001
[2] A. M. Schultz and C. R. Sullivan, “Voltage converter with coupled inductive windings, and associated methods,” U.S. Patent 6,362,986, March 26, 2002
[3] Jieli Li, Charles R. Sullivan, Aaron Schultz, “Coupled inductor design optimization for fast-response low-voltage DC-DC converters,” in Proceedings of IEEE Applied Power Electronics Conference and Exposition, APEC 2002, pp. 817–823 vol.2 [4] Peng Xu, Jia Wei, Kaiwei Yao, Yu Meng, F.C.Lee, “Investigation of candidate topologies for 12 V VRM,” in Proceedings of IEEE Applied Power Electronics Conference and Exposition, APEC 2002, pp. 686-692 vol.2
[5] A.V.Ledenev, G.G.Gurov, and R.M.Porter, “Multiple power converter system using combining transformers,” U.S. Patent 6,545,450, April 8, 2003
[6] Jieli Li, Anthony Stratakos, Charles R. Sullivan, Aaron Schultz, “Using coupled inductors to enhance transient performance of multi-phase buck converters,” in Proceedings of IEEE Applied Power Electronics Conference and Exposition, APEC 2004, pp. 1289–1293 vol.2
[7] Datasheet for FP1308R3R21-R (210nH discrete inductor), http://www.cooperindustries.com/content/dam/public/bussmann/Electronics/Resources/product-datasheets/Bus_Elx_DS_4355_FP1308R.pdf
[8] Datasheet for CLB1108-4-50TR-R (4-phase 50nH coupled inductor), http://www.cooperindustries.com/content/dam/public/bussmann/Electronics/Resources/product-datasheets/bus-elx-ds-10131-clb1108-power-inductors.pdf
[9] Y. Dong, “Investigation of Multiphase Coupled-Inductor Buck Converters in Point-of-Load Applications”, PhD Thesis, Virginia Tech, 2009, http://scholar.lib.vt.edu/theses/available/etd-07312009-143713/unrestricted/ETD_final_Rev2.pdf
[10] T. Schmid, A. Ikriannikov, “Magnetically Coupled Buck Converters,” in Proceedings of IEEE Energy Conversion Congress and Exposition, ECCE 2013, pp. 4948-4954
電磁流量計(jì)相關(guān)文章:電磁流量計(jì)原理
熱式質(zhì)量流量計(jì)相關(guān)文章:熱式質(zhì)量流量計(jì)原理 流量計(jì)相關(guān)文章:流量計(jì)原理
評(píng)論