耗盡型工藝實(shí)現(xiàn)鋰電池充電保護(hù)芯片的設(shè)計(jì)
為了更快地解除過(guò)充電、過(guò)放電狀態(tài), 圖1 中過(guò)充電、過(guò)放電比較器的輸入差分電壓須隨電源電壓的改變而改變, 當(dāng)電池過(guò)充或過(guò)放時(shí), 輸出電壓隨電源電壓變化的比例不同, 因此設(shè)計(jì)出圖4 所示的遲滯電路。
由圖4 可知, 通過(guò)控制TCU 和TDL 的開(kāi)關(guān)來(lái)控制MN1 和MP1 的導(dǎo)通與關(guān)斷, 達(dá)到調(diào)節(jié)點(diǎn)IN_CON 和IN_ODP 電壓大小的目的, 以實(shí)現(xiàn)遲滯效應(yīng)。當(dāng)輸出信號(hào)在和過(guò)充比較器和過(guò)放比較器相比較時(shí), 比較基準(zhǔn)電壓不變, 計(jì)算過(guò)充電、過(guò)放電的遲滯電壓分別為:
由式( 12) 和( 13) 可知, 根據(jù)具體設(shè)計(jì)要求的不同, 調(diào)節(jié)R26、R27、R28、R29、R30 和R31 的大小及比例關(guān)系以達(dá)到實(shí)現(xiàn)不同遲滯電壓的目的。
2.3 0 V電池充電禁止電路
當(dāng)電池電壓低于一定值時(shí), 使CO 輸出為低電平從而禁止充電器對(duì)電池進(jìn)行充電。在此過(guò)程中因?yàn)閂DD 比較低VM 會(huì)變得很負(fù), 所以VDD 和VM 之間易形成很大的電流, 則VDD 到VM 之間的每一條支路上要有比較大的電阻。采用如圖5 所示的電路來(lái)控制CO 的電壓和VDD 到VM 之間的電流。
圖5 中M1、M2、M3、M4、Rl 和R2 組成的電路完成電平轉(zhuǎn)換功能, 抑制功能主要由M5、M6 和R3完成, M7、M8、M9、M10 和R4 組成的與非門(mén)在電平轉(zhuǎn)換功能和0 V 抑制功能之間進(jìn)行選擇。電路需要將邏輯低電平轉(zhuǎn)化為與VM 相同的電位。而VM的電位有可能很負(fù), 在電路轉(zhuǎn)換瞬間, VDD 和VM之間的高電壓很容易將普通的MOS 管擊穿,基于此, 本電路的所有管子都采用高壓非對(duì)稱(chēng)管。
0 V 電池抑制功能發(fā)生在充電過(guò)程中, 此時(shí),IN_ LCB=0, IN_ LC=1,VA 為高電平。當(dāng)電池電壓VDD 在1.2 V 左右時(shí), 就認(rèn)為它是內(nèi)部短路。在這種情況下充電, 充電電流一定很大, 導(dǎo)致VM 的電位下降很大, VDD 的下降使M5 關(guān)閉, VM 的下降使M6 導(dǎo)通, 從而VB 由低電平轉(zhuǎn)化為高電平(此時(shí)的VDD 電壓為0 V 電池充電禁止電壓V0INH) , CO 電位因此接近VM 電位。
模擬結(jié)果如圖6 顯示, 在VDD 降到1V 以下時(shí),CO 端輸出與VM 相同的電平, 關(guān)斷充電回路, 實(shí)現(xiàn)0V 電池充電禁止功能。
3 芯片的測(cè)試結(jié)果
采用0.6 μm、n 阱的CMOS 工藝, 芯片的電特性參數(shù)測(cè)試結(jié)果如表1 所示。其中T 表示溫度,在沒(méi)有特殊說(shuō)明的情況下均為T(mén)=25 ℃。表1 表明所設(shè)計(jì)的芯片滿(mǎn)足寬的電壓工作范圍、寬的溫度工作范圍和低功耗的特點(diǎn)。
表1 CMOS 芯片的電特性
4 結(jié)語(yǔ)
本文對(duì)單節(jié)鋰離子電池的充電保護(hù)芯片的功能原理進(jìn)行了闡述, 詳細(xì)分析了基于耗盡型工藝的關(guān)鍵電路設(shè)計(jì)原理, 重點(diǎn)分析了基于耗盡型工藝的低功耗基準(zhǔn)電壓源的設(shè)計(jì), 測(cè)試結(jié)果顯示所設(shè)計(jì)的芯片滿(mǎn)足低功耗、低成本、寬工作電壓范圍的要求,可用于便攜式電子產(chǎn)品和醫(yī)療測(cè)試儀器的鋰離子電池的一級(jí)保護(hù)。
評(píng)論