<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > 采用FPGA設(shè)計SDH設(shè)備時鐘

          采用FPGA設(shè)計SDH設(shè)備時鐘

          作者: 時間:2008-08-29 來源:網(wǎng)絡(luò) 收藏
          (SEC)是光傳輸系統(tǒng)的重要組成部分,是構(gòu)建同步網(wǎng)的基礎(chǔ),也是同步數(shù)字體系(SDH)可靠工作的前提。SEC的核心部件由鎖相環(huán)構(gòu)成。網(wǎng)元通過鎖相環(huán)跟蹤同步定時基準(zhǔn),并通過鎖相環(huán)的濾波特性對基準(zhǔn)在傳輸過程中產(chǎn)生的抖動和漂移進(jìn)行過濾。而當(dāng)基準(zhǔn)源不可用時,則由SEC提供本地的定時基準(zhǔn)信息,實現(xiàn)高質(zhì)量的輸出。
            SEC需要滿足ITU-T G.813建議[1]中的相關(guān)指標(biāo)要求。SEC可以工作在自由振蕩、跟蹤、保持三種模式下,并且能夠在三種模式之間進(jìn)行平滑切換。由于ITU-T G.813建議規(guī)定的SEC帶寬較窄(-3db帶寬在1~10Hz內(nèi)),且需要在三種工作模式下輸出穩(wěn)定的時鐘,同時還要保證在三種模式切換過程中輸出時鐘穩(wěn)定(即平滑切換),采用模擬鎖相環(huán)(APLL)很難實現(xiàn)。因此一般采用數(shù)字鎖相環(huán)(DPLL)實現(xiàn)SEC[2];也有許多芯片廠商直接采用單片集成電路芯片實現(xiàn)SEC,如SEMTECH公司的ACS8520[3]等。
          本文介紹一種采用單片現(xiàn)場可編程門陣列()芯片實現(xiàn)SEC功能的方案,在此將用設(shè)計的SEC功能芯片命名為TSP8500。
          1 TSP8500芯片內(nèi)部結(jié)構(gòu)及設(shè)計原理
            TSP8500芯片采用Altera公司的EP2C5T144-8 實現(xiàn)。芯片的內(nèi)部結(jié)構(gòu)框圖如圖1所示。


            TSP8500提供兩類時鐘輸出接口:①給SDH網(wǎng)元系統(tǒng)中各功能模塊提供38.88MHz系統(tǒng)時鐘sysclkout和2kHz系統(tǒng)幀頭信號sysfpout;②給其他網(wǎng)元提供2.048MHz的外同步輸出基準(zhǔn)時鐘ext_clk_out。
            該芯片需要外部輸入一路19.44MHz的本地時鐘,通過FPGA的內(nèi)部PLL(鎖相環(huán)1)倍頻后得到311.04MHz高速時鐘,作為芯片內(nèi)部數(shù)字鎖相環(huán)的工作時鐘。當(dāng)所有參考源丟失時,為保證SEC仍然能夠輸出高質(zhì)量的時鐘,本地時鐘一般采用高穩(wěn)定度的溫補晶振(TCXO)或者恒溫晶振(OCXO)提供。
            該芯片還提供微處理器接口,用于各數(shù)字鎖相環(huán)的參考源選擇、工作模式的設(shè)置以及芯片內(nèi)部工作狀態(tài)的查詢。
          1.1 系統(tǒng)時鐘的設(shè)計實現(xiàn)
            從圖1可以看出,芯片輸出的系統(tǒng)時鐘sysclkout,主要由一路全數(shù)字鎖相環(huán)(ADPLL)[4]、主備互鎖模塊(實際上也是一路ADPLL)和FPGA的內(nèi)部PLL (鎖相環(huán)2)共同完成。
            該芯片可以從輸入時鐘中任選1路作為參考時鐘進(jìn)行跟蹤。應(yīng)用該芯片時,用戶通過微處理器接口設(shè)置參考源的優(yōu)先級表(Priority table)后,芯片便可根據(jù)參考源的質(zhì)量等級自動選擇最優(yōu)的參考源進(jìn)行鎖相跟蹤。
            在TSP8500芯片中設(shè)計的ADPLL和其他類型的鎖相環(huán)結(jié)構(gòu)基本一致,主要由鑒相器、邏輯濾波器和數(shù)控時鐘產(chǎn)生器三部分組成。SEC要求在保持模式下仍然能夠輸出高質(zhì)量的時鐘,所以在用于產(chǎn)生系統(tǒng)時鐘的ADPLL中,增加了保持?jǐn)?shù)據(jù)模塊。
            系統(tǒng)時鐘工作在跟蹤模式時,通過ADPLL環(huán)路實現(xiàn)輸出系統(tǒng)時鐘和參考時鐘的同步。同時,將頻率控制字?jǐn)?shù)據(jù)保存在FPGA內(nèi)部自帶的RAM中(即圖1中的保持?jǐn)?shù)據(jù)模塊)。當(dāng)所有參考源丟失時,SEC進(jìn)入保持工作模式,芯片將保持?jǐn)?shù)據(jù)模塊中保存的頻率數(shù)據(jù)按先進(jìn)后出的方式取出,對數(shù)控時鐘產(chǎn)生器進(jìn)行控制,保證了系統(tǒng)時鐘在保持模式下仍然能夠輸出高質(zhì)量的時鐘。
            系統(tǒng)時鐘工作在自由振蕩模式時,由高頻時鐘直接自由分頻得到系統(tǒng)時鐘。
            根據(jù)ITU-T G.813建議要求,SEC帶寬較窄(-3db帶寬在1~10Hz內(nèi))。在邏輯濾波器模塊,采用FPGA內(nèi)部的數(shù)字邏輯實現(xiàn)二階線性濾波器,滿足了SEC噪聲傳遞特性的要求。為了靈活應(yīng)用,濾波器的環(huán)路帶寬可以通過微處理器接口進(jìn)行靈活調(diào)整。當(dāng)參考源切換時,通過濾波器的平滑設(shè)計,保證了頻率控制字緩慢變化,可靠地實現(xiàn)了參考源的平滑切換。
          數(shù)控時鐘產(chǎn)生器模塊由高頻時鐘在頻率控制字的作用下進(jìn)行受控分頻得到。為了減小數(shù)控時鐘產(chǎn)生器輸出時鐘在受控分頻過程中產(chǎn)生的數(shù)字相位噪聲,TSP8500芯片設(shè)計時采用了獨特的“微小相位調(diào)整技術(shù)”,使數(shù)控時鐘產(chǎn)生器輸出時鐘的Cycle-Cycle抖動僅0.4ns。
            SEC一般都采用主備備份設(shè)計。由于SEC本身的帶寬較窄,俘獲速度較慢,當(dāng)主備SEC跟蹤同一路參考源時,無法時刻保持主備SEC相位同步。設(shè)計中增加了主備互鎖模塊,保證了主備相位的快速同步。主備互鎖模塊也由ADPLL實現(xiàn),但其環(huán)路帶寬設(shè)計的較寬,俘獲速度很快,足以保證主備相位準(zhǔn)確同步。SEC工作在主模式時,主備互鎖模塊直接鎖定本板的全數(shù)字鎖相環(huán)ADPLL輸出的時鐘;而當(dāng)SEC工作在備模式時,主備互鎖模塊鎖定對板送來的系統(tǒng)時鐘RDSYSCLK。
          主備互鎖模塊輸出的時鐘,仍然有0.4ns的相位抖動。在這里通過FPGA自帶的PLL(鎖相環(huán)2)進(jìn)行相位平滑。
            主板的系統(tǒng)幀頭直接由主板的38.88MHz時鐘自由分頻得到。而備板的系統(tǒng)幀頭,則由本板的系統(tǒng)時鐘在主板送來的同步幀頭受控下分頻產(chǎn)生。由于主備系統(tǒng)時鐘的相位同步了,所以保證了系統(tǒng)幀頭的相位同步。
          1.2 外同步時鐘的設(shè)計實現(xiàn)
            芯片輸出的外同步時鐘ext_clk_out由一路ADPLL實現(xiàn)。
            外同步時鐘可以從輸入時鐘或系統(tǒng)時鐘中任選一路作為參考時鐘進(jìn)行跟蹤;通過微處理器接口進(jìn)行選源。
            外同步時鐘環(huán)路的濾波設(shè)計,也由FPGA內(nèi)部的數(shù)字邏輯直接實現(xiàn),但是環(huán)路帶寬設(shè)計得比較寬。當(dāng)進(jìn)行參考源切換時,ADPLL會短暫地進(jìn)入保持工作模式,保證了輸出時鐘的穩(wěn)定。
            由于外時鐘頻率為2.048MHz,不能由311.04MHz時鐘整數(shù)分頻得到,所以數(shù)控時鐘產(chǎn)生器模塊采用了小數(shù)受控分頻設(shè)計。由于采用了小數(shù)分頻,數(shù)控時鐘產(chǎn)生器輸出的外同步時鐘的相位抖動為0.8ns。
            鑒于FPGA的PLL資源限制,外同步時鐘沒有采用APLL進(jìn)行濾抖,而是直接由數(shù)控時鐘產(chǎn)生器輸出。但是輸出時鐘的相位抖動也遠(yuǎn)遠(yuǎn)能夠滿足小于0.05UI的要求。
          2 輸出時鐘的性能指標(biāo)測試
            對TSP8500芯片輸出的系統(tǒng)時鐘和外同步時鐘的各項指標(biāo)進(jìn)行了測試。下面主要給出時鐘的抖動特性以及鎖定模式下SEC的相位漂移特性和保持模式下SEC的相位漂移特性。
          2.1 輸出時鐘抖動特性
            將高速示波器設(shè)置為“長余暉”模式,測試TSP8500輸出的系統(tǒng)時鐘sysclkout和外同步時鐘ext_clkout的信號波形,得到輸出時鐘的P-P抖動特性。其中sysclkout時鐘的P-P抖動小于100ps;ext_clkout時鐘的P-P抖動小于2ns。
          2.2 SEC的相位漂移特性
            測試方法如圖2所示。


            采用銣鐘作為測試時鐘基準(zhǔn)源?;鶞?zhǔn)時鐘送TSP8500進(jìn)行跟蹤,同時送時間間隔分析儀。
            TSP8500的系統(tǒng)時鐘sysclkout的參考源,通過CPU接口選定為時鐘基準(zhǔn)源送來的2.048MHz時鐘。由于系統(tǒng)時鐘sysclkout輸出為38.88MHz,不便于用時間間隔分析儀進(jìn)行測試,所以采用外同步時鐘ext_clk_out接口輸出2.048MHz時鐘送時間間隔分析儀進(jìn)行TIE曲線的測試;而ext_clk_out時鐘的參考源,則通過CPU接口選擇sysclkout時鐘。
            在跟蹤模式下,圖2中的開關(guān)K閉合,測試24小時后得到的MTIE/TDEV曲線,如圖3所示。


            從圖3的測試結(jié)論來看,TSP8500跟蹤模式下的相位漂移特性滿足ITU-T G.813建議要求。
          跟蹤24小時后,將圖2的開關(guān)K斷開,TSP8500的系統(tǒng)時鐘自動進(jìn)入保持工作模式,繼續(xù)用時間間隔分析儀表測試24小時,得到保持模式下的MTIE/TDEV曲線,如圖4所示。


            從圖4的測試結(jié)論來看,TSP8500芯片在保持模式下的相位漂移特性也滿足ITU-T G.813建議要求。
            采用單片F(xiàn)PGA實現(xiàn)的SEC芯片TSP8500,輸出時鐘滿足其在SDH設(shè)備中應(yīng)用的要求,各項時鐘性能指標(biāo)完全滿足ITU-T G.813的相關(guān)建議要求。TSP8500芯片已在國內(nèi)某著名通訊設(shè)備廠商開發(fā)的SDH設(shè)備中得到應(yīng)用。
            另外,TSP8500芯片所采用的FPGA,其成本低于10$,遠(yuǎn)低于商用SEC芯片的價格,且功能可靠,具有相當(dāng)高的性價比,有望得到更大規(guī)模的商用。



          關(guān)鍵詞: FPGA SDH 設(shè)備 時鐘

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉
          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();