電磁場高速自動掃描技術在高速PCB設計中的應用
——
隨著當今電子產品主頻提高、布線密度增加以及大量BGA封裝器件和高速邏輯器件的使用,設計人員不得不通過增加PCB板的層數(shù)來減少信號與信號間的相互影響。同時在大量便攜式終端設備中,為了降低系統(tǒng)功耗必須采用多電平方案,而這些設備還有模擬或者RF電路,需要采用多種地,又必須使用電源平面和地平面分割的技術。因此PCB板上的信號之間存在大量輻射干擾,造成設備功能故障或者工作不穩(wěn)定,而且所有信號對外形成很強電磁輻射,使得EMC測試也成為產品上市的一個障礙。
目前大部分硬件工程師還只是憑經驗來設計PCB,在調試過程中,很多需要觀測的信號線或者芯片引腳被埋在PCB中間層,無法使用示波器等工具去探測,如果產品不能通過功能測試,他們也沒有有效的手段去查找問題的原因。要想驗證產品的EMC特性,只有把產品拿到標準電磁兼容測量室去測量,由于這種測量只能測產品對外輻射情況,就算沒有通過也不能為解決問題提供有用的信息,因此工程師只能憑經驗去修改PCB,并重復試驗。這種試驗方法非常昂貴,而且可能耽誤產品的上市時間。
當然,現(xiàn)在有很多高速PCB分析和仿真設計工具,可以幫助工程師解決一些問題,可是目前在器件模型上還存在很多限制,例如能解決信號完整性(SI)仿真的IBIS模型就有很多器件沒有模型或者模型不準確。要精確仿真EMC問題,就必須用SPICE模型,但目前幾乎所有的ASIC都不能提供SPICE模型,而如果沒有SPICE模型,EMC仿真是無法把器件本身的輻射考慮在內的(器件的輻射比傳輸線的輻射大得多)。另外,仿真工具往往要在精度和仿真時間上進行折中,精度相對較高的,需要的計算時間很長,而仿真速度快的工具,其精度又很低。因此用這些工具進行仿真,不能完全解決高速PCB設計中的相互干擾問題。
我們知道,在多層PCB中高頻信號的回流路徑應該在該信號線層臨近的參考地平面(電源層或者地層)上,這樣的回流和阻抗最小,但是實際的地層或電源層中會有分割和鏤空,從而改變回流路徑,導致回流面積變大,引起電磁輻射和地彈噪聲。如果工程師能清楚電流路徑的話,就能避免大的回流路徑,從而有效控制電磁輻射。但信號回流路徑由信號線布線、PCB電源和地分布結構以及電源供電點、去耦電容和器件放置位置和數(shù)量等多種因素所決定,故而對復雜系統(tǒng)的回流路徑從理論上進行判定非常困難。
所以在設計階段排除輻射噪聲問題非常關鍵。我們用示波器能看到信號的波形,從而可幫助解決信號完整性問題,那么有沒有設備能看到輻射的“圖形”以及電路板上的回流呢?
電磁場高速掃描測量技術
在各種電磁輻射測量方法中,有一種近場掃描測量方法能解決這個問題,該方法基于這樣的原理設計,即電磁輻射是被測設備(DUT)上的高頻電流回路形成的。如加拿大EMSCAN公司的電磁輻射掃描系統(tǒng)Emscan就是根據(jù)這個原理制成的,它采用H場陣列探頭(有32
評論