碳化硅(sic)mosfet 文章 進入碳化硅(sic)mosfet技術(shù)社區(qū)
仿真看世界之SiC MOSFET單管的并聯(lián)均流特性
- 開篇前言關(guān)于SiC MOSFET的并聯(lián)問題,英飛凌已陸續(xù)推出了很多技術(shù)資料,幫助大家更好的理解與應(yīng)用。此文章將借助器件SPICE模型與Simetrix仿真環(huán)境,分析SiC MOSFET單管在并聯(lián)條件下的均流特性。特別提醒仿真無法替代實驗,僅供參考。1、選取仿真研究對象SiC MOSFETIMZ120R045M1(1200V/45mΩ)、TO247-4pin、兩并聯(lián)Driver IC1EDI40I12AF、單通道、磁隔離、驅(qū)動電流±4A(min)2、仿真電路Setup如圖1所示,基于雙脈沖的思路,搭建雙管并
- 關(guān)鍵字: MOSFET
意法半導(dǎo)體收購Norstel AB 強化碳化硅產(chǎn)業(yè)供應(yīng)鏈
- 近年隨著電動汽車產(chǎn)業(yè)崛起,碳化硅(SiC)功率半導(dǎo)體市場需求激增,吸引產(chǎn)業(yè)鏈相關(guān)企業(yè)的關(guān)注,國際間碳化硅(SiC)晶圓的開發(fā)驅(qū)使SiC爭奪戰(zhàn)正一觸即發(fā)。與硅(Si)相比,碳化硅是具有比硅更寬的能帶隙(energy bandgap,Eg)的半導(dǎo)體;再者,碳化硅具有更高的擊穿電場 (breakdown electric field,Ec),因此可被用于制造功率組件應(yīng)用之電子電路的材料,因為用碳化硅制成的芯片即使厚度相對小也能夠經(jīng)受得起相對高的電壓。表一分別示出了硅和碳化硅的能帶隙(Eg)、擊穿電場(Ec)和電
- 關(guān)鍵字: 意法半導(dǎo)體 Norstel AB 碳化硅 SiC
功率半導(dǎo)體IGBT失效分析與可靠性研究
- 高端變頻空調(diào)在實際應(yīng)用中出現(xiàn)大量外機不工作,經(jīng)過大量失效主板分析確認是主動式PFC電路中IGBT擊穿失效,本文結(jié)合大量失效品分析與電路設(shè)計分析,對IGBT失效原因及失效機理分析,分析結(jié)果表明:經(jīng)過對IGBT失效分析及IGBT工作電路失效分析及整機相關(guān)波形檢測、熱設(shè)計分析、IGBT極限參數(shù)檢測對比發(fā)現(xiàn)IGBT失效由多種原因?qū)е?,IGBT在器件選型、器件可靠性、閂鎖效應(yīng)、驅(qū)動控制、ESD能力等方面存在不足,逐一分析論證后從IGBT本身及電路設(shè)計方面全部提升IGBT工作可靠性。
- 關(guān)鍵字: 主動式PFC升壓電路 IGBT SOA 閂鎖效應(yīng) ESD 熱擊穿失效 202108 MOSFET
羅姆即將亮相2021 PCIM Asia深圳國際電力元件、可再生能源管理展覽會
- 全球知名半導(dǎo)體制造商羅姆將于2021年9月9日~11日參加在深圳國際會展中心舉辦的PCIM Asia 2021深圳國際電力元件、可再生能源管理展覽會(展位號:11號館B39),屆時將展示面向工業(yè)設(shè)備和汽車領(lǐng)域的、以世界先進的SiC(碳化硅)元器件為核心的產(chǎn)品及電源解決方案。同時,羅姆工程師還將在現(xiàn)場舉辦的“SiC/GaN功率器件技術(shù)與應(yīng)用分析大會”以及“電動交通論壇”等同期論壇上發(fā)表演講,分享羅姆最新的碳化硅技術(shù)成果。展位效果圖羅姆擁有世界先進的SiC為核心的功率元器件技術(shù),以及充分發(fā)揮其性能的控制IC和
- 關(guān)鍵字: MOSFET
了解熱阻在系統(tǒng)層級的影響
- 在電阻方面,電流流動的原理可以比作熱從熱物體流向冷物體時遇到的阻力。每種材料及其接口都有一個熱阻,可以用這些數(shù)字來計算從源頭帶走熱的速率。在整合式裝置中,半導(dǎo)體接面是產(chǎn)生熱的來源,允許接面超過其最大操作溫度將導(dǎo)致嚴重故障。整合式裝置制造商雖使用一些技術(shù)來設(shè)計保護措施,以避免發(fā)生過熱關(guān)機等情況,但不可避免的是仍會造成損壞。一個更好的解決方案,就是在設(shè)計上選擇抑制 (或至少限制) 會造成接面溫度超過其操作最大值的情況。由于無法直接強制冷卻接面溫度,透過傳導(dǎo)來進行散熱是確保不會超過溫度的唯一方法。工程師需要在這
- 關(guān)鍵字: MOSFET
羅姆為電動汽車充電樁打造高效解決方案
- 引言全球能源短缺和大氣污染問題日益嚴峻,汽車產(chǎn)業(yè)綠色低碳發(fā)展已成為降低全社會碳排放、增強國家競爭力的有效手段。作為領(lǐng)先的功率半導(dǎo)體廠商之一,羅姆一直致力于技術(shù)創(chuàng)新,研發(fā)各種高效、高品質(zhì)的功率器件,為大功率智能充電站提供安全可靠的解決方案,在支持綠色出行的同時助力全面低碳社會的可持續(xù)發(fā)展??s短充電時間的高輸出挑戰(zhàn)對電動汽車車主來說,縮短充電時間是非常重要的訴求,而大功率充電是其中關(guān)鍵的支撐技術(shù)。提升續(xù)航距離需要増加電池容量,為縮短充電時間,需要高輸出能力的充電樁,如360kW的充電樁要搭載9個40kW的電源
- 關(guān)鍵字: 充電樁 碳化硅
碳化硅邁入新時代 ST 25年研發(fā)突破技術(shù)挑戰(zhàn)
- 1996年,ST開始與卡塔尼亞大學(xué)合作研發(fā)碳化硅(SiC),今天,SiC正在徹底改變電動汽車。為了慶祝ST研發(fā)SiC 25周年,我們決定探討 SiC在當(dāng)今半導(dǎo)體行業(yè)中所扮演的角色,ST的碳化硅研發(fā)是如何取得成功的,以及未來發(fā)展方向。Exawatt的一項研究指出,到2030年, 70%的乘用車將采用SiC MOSFET。這項技術(shù)也正在改變其他市場,例如,太陽能逆變器、儲能系統(tǒng)、服務(wù)器電源、充電站等。因此,了解SiC過去25年的發(fā)展歷程是極其重要的,對今天和明天的工程師大有裨益。碳化硅:半導(dǎo)體行業(yè)如何克服技術(shù)
- 關(guān)鍵字: MOSFET
Maxim Integrated發(fā)布來自Trinamic子品牌的3相MOSFET柵極驅(qū)動器,可最大程度地延長電池壽命并將元件數(shù)量減半
- TRINAMIC Motion Control GmbH & Co. KG (Maxim Integrated Products, Inc子公司)近日宣布推出完全集成的TMC6140-LA ?3相MOSFET柵極驅(qū)動器,有效簡化無刷直流(DC)電機驅(qū)動設(shè)計,并最大程度地延長電池壽命。TMC6140-LA 3相MOSFET柵極驅(qū)動器為每相集成了低邊檢流放大器,構(gòu)成完備的電機驅(qū)動方案;與同類產(chǎn)品相比元件數(shù)量減半,且電源效率提高30%,大幅簡化設(shè)計。TMC6140-LA針對較寬的電壓范圍進行性
- 關(guān)鍵字: MOSFET
意法半導(dǎo)體制造首批8吋碳化硅晶圓
- 意法半導(dǎo)體(STMicroelectronics)宣布,ST瑞典Norrkoping工廠制造出首批8吋(200mm)碳化硅(SiC)晶圓,這些晶圓將用于生產(chǎn)下一代功率電子芯片產(chǎn)品原型。將SiC晶圓升級到8吋代表著ST針對汽車和工業(yè)客戶的擴產(chǎn)計劃獲得重要階段性的成功,其鞏固了ST在此一開創(chuàng)性技術(shù)領(lǐng)域的領(lǐng)導(dǎo)地位,且提升了功率電子芯片的輕量化和效能,降低客戶獲取這些產(chǎn)品的擁有總成本。 意法半導(dǎo)體制造首批8吋碳化硅晶圓意法半導(dǎo)體首批8吋SiC晶圓質(zhì)量十分優(yōu)良,對于芯片良率和晶體位錯誤之缺陷非常低。其低缺
- 關(guān)鍵字: 意法半導(dǎo)體 碳化硅
鄭有炓院士:第三代半導(dǎo)體迎來新發(fā)展機遇
- 半導(dǎo)體材料是信息技術(shù)的核心基礎(chǔ)材料,一代材料、一代技術(shù)、一代產(chǎn)業(yè),半個多世紀來從基礎(chǔ)技術(shù)層面支撐了信息技術(shù)翻天覆地的變化,推動了電子信息科技產(chǎn)業(yè)可持續(xù)蓬勃發(fā)展。同樣地,信息技術(shù)和電子信息科技產(chǎn)業(yè)發(fā)展需求又驅(qū)動了半導(dǎo)體材料與技術(shù)的發(fā)展。第三代半導(dǎo)體材料及其應(yīng)用第三代半導(dǎo)體是指以GaN、SiC為代表的寬禁帶半導(dǎo)體材料,它是繼20世紀50年代以Ge、Si為代表的第一代半導(dǎo)體和70年代以GaAs、InP為代表的第二代半導(dǎo)體之后于90年代發(fā)展起來的新型寬禁帶半導(dǎo)體材料,即禁帶寬度明顯大于Si(1.12 eV)和Ga
- 關(guān)鍵字: 第三代半導(dǎo)體 SiC
電動汽車用SiC和傳統(tǒng)硅功率元器件都在經(jīng)歷技術(shù)變革
- 近年來,在全球“創(chuàng)建無碳社會”和“碳中和”等減少環(huán)境負荷的努力中,電動汽車(xEV)得以日益普及。為了進一步提高系統(tǒng)的效率,對各種車載設(shè)備的逆變器和轉(zhuǎn)換器電路中使用的功率半導(dǎo)體也提出了多樣化需求,超低損耗的SiC 功率元器件(SiC MOSFET、SiC SBD等)和傳統(tǒng)的硅功率元器件(IGBT、SJ-MOSFET 等)都在經(jīng)歷技術(shù)變革。在OBC(車載充電機)方面,羅姆以功率器件、模擬IC 以及標準品這三大產(chǎn)品群進行提案。羅姆半導(dǎo)體(上海)有限公司 技術(shù)中心 副總經(jīng)理 周勁1? ?Si
- 關(guān)鍵字: MOSFET 202108
汽車電氣化的部分關(guān)鍵技術(shù)及ST的解決方案
- 1? ?汽車電氣化的趨勢和挑戰(zhàn)汽車市場中與電氣化相關(guān)的應(yīng)用是減少交通碳排放影響的關(guān)鍵因素。中國領(lǐng)導(dǎo)人在2020年9 月提出中國要在2030年碳達峰,2060 年實現(xiàn)碳中和的目標。為了實現(xiàn)碳中和,減少能源使用中的碳排放是其中的重要一環(huán)。電能是清潔、高效的能源品種,用電能作為主要的能源消耗可以大幅減少碳排放。同時也要發(fā)展低排放的清潔能源作為主要發(fā)電的能源。中國交通運輸行業(yè)碳排放占比達10%,而公路運輸占其中的74%,主要來自燃油車的排放。因此,發(fā)展電動汽車并逐漸從燃油車過渡到電動汽車對減少
- 關(guān)鍵字: 202108 SiC BMS
清潔安全的汽車將由功能電子化和自動駕駛賦能
- 未來的汽車將是清潔和安全的汽車,由先進的汽車功能電子化和自動駕駛技術(shù)賦能。安森美半導(dǎo)體汽車戰(zhàn)略及業(yè)務(wù)拓展副總裁 Joseph Notaro1? ?功率器件賦能電動汽車電動車可幫助實現(xiàn)零排放,其市場發(fā)展是令人興奮和充滿生機的,隨著電動車銷售不斷增長,必須推出滿足駕駛員需求的基礎(chǔ)設(shè)施,以提供一個快速充電站網(wǎng)絡(luò),使他們能夠快速完成行程,而沒有“續(xù)航里程焦慮癥”。這一領(lǐng)域的要求正在迅速發(fā)展,需要超過350 kW 的功率水平和95% 的能效成為“常規(guī)”。鑒于這些充電樁部署在不同的環(huán)境和地點,緊湊
- 關(guān)鍵字: 202108 SiC 汽車 OBC
功率因素校正電路旁路二極管的作用
- 本文總結(jié)了功率因素校正電路加旁路二極管作用的幾種不同解釋:減少主二極管的浪涌電流;提高系統(tǒng)抗雷擊的能力;減少開機瞬間系統(tǒng)的峰值電流,防止電感飽和損壞功率MOSFET。具體分析了輸入交流掉電系統(tǒng)重起動,導(dǎo)致功率MOSFET驅(qū)動電壓降低、其進入線性區(qū)而發(fā)生損壞,才是增加旁路二極管最重要、最根本的原因。給出了在這種模式下,功率MOSFET發(fā)生損壞的波形和失效形態(tài),同時給出了避免發(fā)生這種損壞的幾個措施。
- 關(guān)鍵字: 功率因素校正 旁路二極管 線性區(qū) 欠壓保護 202103 MOSFET
碳化硅(sic)mosfet介紹
您好,目前還沒有人創(chuàng)建詞條碳化硅(sic)mosfet!
歡迎您創(chuàng)建該詞條,闡述對碳化硅(sic)mosfet的理解,并與今后在此搜索碳化硅(sic)mosfet的朋友們分享。 創(chuàng)建詞條
歡迎您創(chuàng)建該詞條,闡述對碳化硅(sic)mosfet的理解,并與今后在此搜索碳化硅(sic)mosfet的朋友們分享。 創(chuàng)建詞條
關(guān)于我們 -
廣告服務(wù) -
企業(yè)會員服務(wù) -
網(wǎng)站地圖 -
聯(lián)系我們 -
征稿 -
友情鏈接 -
手機EEPW
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權(quán)所有 北京東曉國際技術(shù)信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網(wǎng)安備11010802012473
Copyright ?2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《電子產(chǎn)品世界》雜志社 版權(quán)所有 北京東曉國際技術(shù)信息咨詢有限公司
京ICP備12027778號-2 北京市公安局備案:1101082052 京公網(wǎng)安備11010802012473