一種適用于大功率IGBT模塊串聯工作的新型驅動電路
1引言
本文引用地址:http://www.ex-cimer.com/article/201808/387821.htm隨著電力電子技術的飛速發展,特別是IGBT(Insulated Gate BipolarTransistor,絕緣柵雙極晶體管)和MOSFET (Metallic oxide semiconductor field effecttransistor,金屬氧化物半導體場效應晶體管)等高頻自關斷器件應用的日益廣泛,驅動電路的設計就顯得尤為重要。本文介紹了一種以CONCEPT公司的IGD515EI驅動器為主要器件構成的驅動電路,適用于大功率、高耐壓IGBT模塊串、并聯電路的驅動和保護。通過光纖傳輸驅動及狀態識別信號,進行高壓隔離傳輸,具有良好的抗電磁干擾性能和高于15A的驅動電流。因此,該電路適用于高壓大功率場合。在隔離的高電位端, IGD515EI內部的DC-DC電源模塊只需一路驅動電源就能夠產生柵極驅動所需的±15V電源。器件內還包括功率管的過流和短路保護電路,以及信號反饋檢測功能。該電路是一種性能優異、成熟的驅動電路。
雷達發射機常用的調制器一般有三種類型:軟性開關調制器、剛性開關調制器和浮動板調制器。浮動板調制器一般用于控制極調制的微波電子管,而對于陰調的微波管則只能采用軟性開關調制器和剛性開關調制器。由于軟性開關調制器不易實現脈寬變化,故在陰調微波管發射機的脈寬要求變化時,發射機的調制器往往只能采用剛性開關調制器。剛性開關調制器又稱剛管調制器,剛管調制器因其調制開關可受控主動關斷而得名。因此,采用這種調制器發射機脈寬可實現脈間變化。
IGBT屬于場控功率管,具有開關速度快、管壓降小等特點,在剛管調制器中得到越來越廣泛的應用,但其觸發電路設計以及單只IGBT有限的電壓和電流能力是其推廣應用的難點。方案采用IGD515EI,加入相應的外圍電路,構成了IGBT驅動電路,通過IGD515EI的34腳(SDSOA)多管聯用特性端實現兩管串聯應用,解決了IGBT單管耐壓不高的問題。IGBT驅動電路如圖1所示。驅動信號通過光纖接收器HFBR-2521送給驅動模塊,驅動模塊報故障時通過光纖發射器HFBR-1521送出故障信號給控制電路,由控制電路切斷所有IGBT驅動電路的驅動信號,各個IGD515EI同時輸出-15V的負偏壓,各個IGBT同時關斷,避免個別器件提前關斷,造成過壓擊穿。
圖1IGBT驅動電路
2. 1IGBT驅動器電源設計
由于IGD515EI只需要單路電源供電,在輸入端的10腳(VCC)和9腳(GND)接入+15V電源,由模塊內部通過DC/DC變換產生±15V和+5V輸出,為光纖發射器、接收器以及輸出電路提供電源。因而對每個處于高電位的驅動電路來說,只需提供一個15V電源即可,便于做到電位隔離。
2. 2IGBT柵極觸發電路設計
驅動器的25腳(G)輸出的驅動電壓為±12V~±15V,這取決于電源電壓;也可不產生負的柵極電壓,這要由具體的應用和所使用的功率管決定。最大柵極充電電流是±15A,充電電流由外接的柵極電阻限定。如果將25腳G通過電阻直接與IGBT:G相連, IGBT的驅動波形上升沿較大,但IGBT導通后上升較快,如圖2所示;
圖2IGD515EI輸出端不加MOS管時IGBT的驅動波形(-14V~+12V, 5V/p, 5μs/p)
如果在25腳與IGBT:G中間串入一只MOS管,進行電流放大,可有效地減小IGBT驅動波形的上升沿,縮短IGBT的導通過程,減小IGBT離散性造成的導通不一致性,減小動態均壓電路的壓力,但IGBT導通后上升較慢,其波形如圖3所示。
圖3IGD515EI輸出端加MOS管時IGBT的驅動波形(-14V~+12V, 5V/p, 5μs/p)
2. 3IGBT過流檢測及保護電路參數的選擇
(1)響應時間電容和中斷時間電容選擇
功率管,特別是IGBT的導通需要幾個微秒,因此功率管導通后要延遲一段時間才能對其管壓降進行監測,以確定IGBT是否過流,這個延遲即為“響應時間”。響應時間電容CME的作用是和內部1. 5kΩ上拉電阻構成數微秒級的延時ta,CME的計算方法如下:
在IGBT導通以后,通過IGD515EI內部的檢測電路對19腳的檢測電壓(IGBT的導通壓降)進行檢測。若導通壓降高于設定的門限,則認為IGBT處于過流工作狀態,由IGD515EI的35腳送出IGBT過流故障信號,經光纖送給控制電路,將驅動信號封鎖一小段時間。這段時間為截止時間tb,大小由20腳(Cb)與24腳(COM)之間外接的電容Cb確定。對于給定的截止時間,則Cb由下式確定:
評論