<meter id="pryje"><nav id="pryje"><delect id="pryje"></delect></nav></meter>
          <label id="pryje"></label>

          新聞中心

          EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > Mathematica入門(mén)教程之Mathematica的基本語(yǔ)法特征

          Mathematica入門(mén)教程之Mathematica的基本語(yǔ)法特征

          作者: 時(shí)間:2011-11-02 來(lái)源:網(wǎng)絡(luò) 收藏
          oadfile/201111/20111102015249103.gif" width=34>或Mathematica入門(mén)教程之Mathematica的基本語(yǔ)法特征)

          Inverse[M]

          計(jì)算矩陣M的逆矩陣(Mathematica入門(mén)教程之Mathematica的基本語(yǔ)法特征)

          Eigenvalus[A]

          計(jì)算矩陣A的全部(準(zhǔn)確解)特征值

          Eigenvalus[N[A]]

          計(jì)算矩陣A的全部(數(shù)值解)特征值

          Eigenvectors[A]

          計(jì)算矩陣A的全部(準(zhǔn)確解)特征向量

          Eigenvectors[N[A]]

          計(jì)算矩陣A的全部(數(shù)值解)特征向量

          Eigensystem[A]

          計(jì)算矩陣A的所有(準(zhǔn)確解)特征值和特征向量

          Eigensystem[N[A]]

          計(jì)算矩陣A的所有(數(shù)值解)特征值和特征向量

          中用LinerSolve[A,B],求解滿(mǎn)足AX=B的一個(gè)解.如果A的行列式不為零,那么這個(gè)解是方程組的唯一解; 如果A的行列式是零,那么這個(gè)解是方程組的一個(gè)特解,方程組的全部解由基礎(chǔ)解系向量的線(xiàn)性組合加上這個(gè)特解組成. NullSpace[A]計(jì)算方程組AX=0的基礎(chǔ)解系的向量表,用LinerSolve[A,B]和NullSpace[A]聯(lián)手解出方程組AX=B的全部解. 中還有一個(gè)美妙的函數(shù)RowReduce[A],它對(duì)A的行向量作化間成梯形的初等線(xiàn)性變換.用RowReduce可計(jì)算矩陣的秩,判斷向量組是線(xiàn)性相關(guān)還是線(xiàn)性無(wú)關(guān)和計(jì)算極大線(xiàn)性無(wú)關(guān)組等工作.

          解方程組函數(shù)

          意義

          RowReduce[A]

          作行的線(xiàn)性組合化簡(jiǎn)A,A為m行n列的矩陣



          評(píng)論


          相關(guān)推薦

          技術(shù)專(zhuān)區(qū)

          看屁屁www成人影院,亚洲人妻成人图片,亚洲精品成人午夜在线,日韩在线 欧美成人 (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();